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SPANWISE WALL OSCILLATIONS
GEOMETRY

Mean flow
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Why does the skin-friction coefficent decrease?

Cf = 2τw/(ρU2
b ) decreases→ study why Ub increases
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AVERAGING OPERATORS
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MEAN FLOW
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Optimum period of oscillation T≈75
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TURBULENCE STATISTICS
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ENERGY BALANCE: A SCHEMATIC
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Energy is fed through Px (→ Ubτw ) and wall motion (→ Ew )
Energy is dissipated through:

Mean-flow viscous effects (streamwise→ DU , spanwise→ DW )
Turbulent viscous effects (→ DT )
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ENERGY BALANCE: EQUATIONS

GLOBAL MEAN KINETIC ENERGY EQUATION
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GLOBAL TURBULENT KINETIC ENERGY EQUATION
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[
ω̂iωi

]
g
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∂Û

∂y

)2
]

g︸ ︷︷ ︸
DU

+

[(
∂Ŵ
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∂Û

∂y

]

g︸ ︷︷ ︸
Puv

−

[
v̂w
∂Ŵ
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ûv
∂Û
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KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?

Why does Ub increase?

THREE POSSIBILITIES

1 Stokes layer acts on DU directly

→ excluded because W does not work directly on
(
∂Û/∂y

)2

2 Stokes layer acts on Puv directly

→ excluded because W does not work directly on ûv

3 Stokes layer acts on DT =
[
ω̂iωi

]
g

directly

→W works on turbulent vorticity transport

TURBULENT ENSTROPHY TRANSPORT

Study the transport of turbulent enstrophy ω̂iωi

The term enstrophy was coined by G. Nickel and is from Greek στρoφή, which means turn

5 DECEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 9-1



KEY QUESTIONS

STILL TO BE ANSWERED

Why does TKE decrease?

Why does Ub increase?

THREE POSSIBILITIES

1 Stokes layer acts on DU directly

→ excluded because W does not work directly on
(
∂Û/∂y

)2

2 Stokes layer acts on Puv directly

→ excluded because W does not work directly on ûv
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∂Ŵ

∂y
︸ ︷︷ ︸

3

+
̂
ωj
∂u

∂xj

∂Ŵ
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Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let’s look at the terms of the equation
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∂Ŵ

∂y
︸ ︷︷ ︸

4

−
̂
ωj
∂w

∂xj

∂Û
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∂y2︸ ︷︷ ︸
7

+
̂
ωiωj
∂ui

∂xj︸ ︷︷ ︸
8

−
1

2

∂

∂y

(
v̂ωiωi

)
︸ ︷︷ ︸

9

+
1

2

∂2ω̂iωi

∂y2︸ ︷︷ ︸
10

−
̂∂ωi

∂xj

∂ωi

∂xj︸ ︷︷ ︸
11

.

Stokes layer influences dynamics of turbulent enstrophy
Three terms: which is the dominating one?

→ Let’s look at the terms of the equation

5 DECEMBER 2012 WALL-OSCILLATION DRAG-REDUCTION PROBLEM 10-1



TURBULENT ENSTROPHY EQUATION

1

2

∂ω̂iωi

∂τ︸ ︷︷ ︸
1

= ω̂xωy
∂Û
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∂Û

∂y︸ ︷︷ ︸
5

− v̂ωx
∂2Ŵ
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TURBULENT ENSTROPHY PROFILES
OSCILLATING-WALL PROFILES
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Term 3, ω̂zωy∂Ŵ/∂y → turbulent enstrophy production is dominant

Other oscillating-wall terms are smaller

Turbulent dissipation of turbulent enstrophy increases
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INTERESTING, BUT...

We have not answered questions on TKE and Ub, yet

Key: transient from start-up of wall motion
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TRANSIENT: THREE STAGES

SHORT STAGE

Turbulent enstrophy increases through ω̂zωy∂Ŵ/∂y

INTERMEDIATE STAGE

TKE decreases because of enhanced turbulent dissipation

LONG STAGE

Bulk velocity increases because of TKE reduction

→ drag reduction
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DRAG REDUCTION MECHANISM

Initial state
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DRAG REDUCTION MECHANISM

Short
t < 50

Initial state

ωzωy
∂W
∂y ↑ ωiωi ↑
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Short
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DRAG REDUCTION MECHANISM
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DRAG REDUCTION MECHANISM

Short
t < 50

Intermediate
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Initial state

∂U

∂t
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DRAG REDUCTION MECHANISM

Short
t < 50

Intermediate
50 < t < 400

Long
t > 400

Initial state ‘Drag reduction’

∫ h

0
Udy ↑

∂U

∂t
> 0

∂uv
∂y ↓ωzωy

∂W
∂y ↑ ωiωi ↑

DT ↑

TKE ↓
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PHYSICAL INTERPRETATION OF ω̂zωy∂Ŵ/∂y

ω̂zωy∂Ŵ/∂y is key term leading to drag reduction

ω̂zωy∂Ŵ/∂y → ∂Ŵ/∂y acts on ω̂zωy

ω̂zωy ≈
∂̂u
∂y
∂u
∂z

∂u
∂y → upward eruption of near-wall low-speed fluid
∂u
∂z → lateral flanks of the low-speed streaks
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∂z located at the sides of high-speed streaks
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MODELLING TURBULENT ENSTROPHY PRODUCTION

y

z

xn

xs

α

ωyz

SIMPLIFIED TURBULENT ENSTROPHY EQUATION

1

2

∂

∂t

(
ω

2
y + ω

2
z

)
= ωzωy G −

(
∂ωy

∂y

)2

−

(
∂ωz

∂y

)2

Rotation of axis

1

2

∂ω2
n

∂t
= Snnω

2
n −

(
∂ωn

∂y

)2

Integration by Charpit’s method

ωn = ωn,0 esinα cosαGt︸ ︷︷ ︸
stretching

e−β
2 t e−βy︸ ︷︷ ︸

dissipation

, β =
∂ωn/∂t

∂ωn/∂y
∼
λy

λt
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OSCILLATION PERIOD VS. TERM 3
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Drag reduction grows monotonically with global production term

This happens up to optimum period
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THANK YOU!
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