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We show that the Fukagata et al. (2002)’s identity for free-stream boundary layers
simplifies to the von Kármán momentum integral equation relating the skin-friction
coefficient and the momentum thickness when the upper bound in the integrals used to
obtain the identity is taken to be asymptotically large. If a finite upper bound is used, the
terms of the identity depend spuriously on the bound itself. Differently from channel
and pipe flows, the impact of the Reynolds stresses on the wall-shear stress cannot
be quantified in the case of free-stream boundary layers because the Reynolds stresses
disappear from the identity. The infinite number of alternative identities obtained by
performing additional integrations on the streamwise momentum equation also all
simplify to the von Kármán equation. Analogous identities are found for channel flows,
where the relative influence of the physical terms on the wall-shear stress depends
on the number of successive integrations, demonstrating that the laminar and turbulent
contributions to the skin-friction coefficient are only distinguished in the original identity
discovered by Fukagata et al. (2002). In the limit of large number of integrations, these
identities degenerate to the definition of skin-friction coefficient and a novel twofold-
integration identity is found for channel and pipe flows. In addition, we decompose
the skin-friction coefficient uniquely as the sum of the change of integral thicknesses
with the streamwise direction, following the study of Renard & Deck (2016). We utilize
an energy thickness and an inertia thickness, which is composed of a thickness related
to the mean-flow wall-normal convection and a thickness linked to the streamwise
inhomogeneity of the mean streamwise velocity. The contributions of the different terms
of the streamwise momentum equation to the friction drag are thus quantified by these
integral thicknesses.
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1. Introduction
Wall-bounded turbulent flows play a crucial role in an immense range of technological

and industrial fluid systems, e.g. over vehicles moving in air and water, through pipes
and ducts used for oil and gas transport and inside combustion and jet engines. Free-
stream turbulent boundary layers are particularly relevant in aerodynamics applications
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and, with respect to flat-wall channel flows and circular pipe flows, they present an
additional difficulty because the streamwise direction is statistically inhomogeneous as
the shear-layer thickness grows downstream. A major research objective is the accurate
computation or measurement of the streamwise evolving wall-shear stress in turbulent
boundary layers. This task is more challenging than in pressure-driven channel and
pipe flows because the wall friction cannot be determined conveniently through the
streamwise pressure gradient, but only through the mean-velocity gradient at the wall.

A breakthrough in this research area has been the discovery of the Fukagata-Iwamoto-
Kasagi identity (FIK) (Fukagata et al. 2002), which relates the wall-shear stress to a
simple integral involving the Reynolds stresses in channel and pipe flows, with the
addition of other integral terms in the case of free-stream boundary layers because of
their streamwise inhomogeneity. The integrals in the FIK identity are performed along
the wall-normal direction from the wall to an upper integration bound, i.e. the flow
centreline for channels and pipe flows, and the boundary-layer thickness for boundary
layers. Another relevant identity was discovered by Renard & Deck (2016) (hereafter
referred to as the RD decomposition), for which the skin-friction coefficient is expressed
as the sum of integral terms belonging to the mechanical energy equation. Alternative
identities for the skin-friction coefficients of these flows, derived from the vorticity
equation, was obtained by Yoon et al. (2016), and variants for open-channel flows were
studied by Nikora et al. (2019) and Duan et al. (2021).

The utilization of the FIK decomposition for turbulent channel flows has been
significant. It has also been used in the context of drag reduction techniques, for which
it is important to understand the contribution of various quantities to the skin friction. It
appeared in the studies of Xia et al. (2015) and Stroh et al. (2015) on boundary layers with
opposition control, Kametani & Fukagata (2011), Kametani et al. (2015) and Kametani
et al. (2016), where blowing and suction were used as the control mechanism, and
Bannier et al. (2015), who analyzed flows with drag reduction by riblets. The influence
of the large scale structures in the boundary layer was investigated with the aid of FIK
decomposition by Deck et al. (2014). Monte et al. (2011) studied the flow over a cylinder to
investigate the influence of the curvature ratio on the skin friction using the FIK identity.

The RD decomposition has recently become more popular in the study of boundary-
layer flows. Fan et al. (2019) used it to investigate incompressible and compressible
turbulent boundary layers, focussing on the Reynolds-number behaviour of the different
terms of the decomposition. Fan et al. (2020) utilized the RD decomposition to study an
adverse-pressure-gradient boundary layer while Fan et al. (2022) investigated the flow
over the suction and pressure sides of an airfoil. Zhang et al. (2020) compared the
application of the FIK and RD decompositions in channel flows with drag reduction due
to viscoelastic fluids.

The interesting study by Elnahhas & Johnson (2022) is particularly worth mentioning
because their identity expresses the skin-friction coefficient of free-stream boundary
layers as the sum of the Blasius friction coefficient and an integrated contribution of the
Reynolds stresses, thereby distinguishing the contribution of the laminar flow and the
nonlinear fluctuations in transitional or turbulent boundary layers.

The choice of the boundary-layer thickness as the upper integration bound in the FIK
analysis in the case of free-stream boundary layers was questioned by Renard & Deck
(2016) because the definition of the thickness is arbitrary and the contribution of the
turbulent fluctuations above that wall-normal location, albeit small, is thus neglected
without justification. The impact of the upper integration limit on the terms of the
identity was discussed by Mehdi et al. (2014) and Wenzel et al. (2022).

We show herein that, in the case of free-stream boundary layers, a finite upper bound
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of integration in the free stream generates a spurious dependence of the terms of the
FIK identity on the bound itself. It follows that the upper bound has to be taken
asymptotically large, a step that simplifies the FIK identity to the well-known von
Kármán momentum integral equation relating the wall-shear stress and the momentum
thickness. The influence of the Reynolds stresses on the wall friction cannot thus be
quantified, as in the cases of channel and pipe flows. We also find that the infinite
number of identities obtained by successive integration all reduce to the von Kármán
momentum equation for boundary layers, while, for channel flows, only the original
FIK identity possesses a clear physical meaning. By asymptotic analysis, it is revealed
that the family of identities for channel flows collapses to the definition of skin-friction
coefficient when the number of iterations increases to infinity. We interpret the skin-
friction coefficient decomposition for boundary layers by Renard & Deck (2016) in terms
of integral thicknesses, by utilizing an energy thickness and an inertia thickness, the
latter composed of two thicknesses related to the mean-flow wall-normal convection
and the streamwise inhomogeneity.

2. Flow systems
We consider a free-stream boundary layer flowing past a flat plate in the absence of

a streamwise pressure gradient. Unless otherwise stated, the Navier-Stokes equations
are scaled by using the free-stream velocity U∗∞ as the reference velocity and ν∗/U∗∞
as the reference length scale, where ν∗ is the kinematic viscosity of the fluid. Quantities
denoted by ∗ are dimensional, while quantities without any symbol are non-dimensional.
The Cartesian coordinates x, y, z denote the streamwise, wall-normal and spanwise
directions, respectively. The velocity components along x, y and z are u, v and w,
respectively. The flat plate is at y = 0 and the flow is unconfined along the wall-
normal direction. It is assumed that the flow has reached fully developed conditions
and the direction z and the time t are statistically homogeneous. Averaging a quantity
q over z along a distance Lz and over t for a time interval T is defined as q(x, y) =
L−1

z T−1
∫ T

0

∫ Lz

0 q(x, y, z, t)dzdt. Each quantity is decomposed as q(x, y, z, t) = q(x, y) +
q′(x, y, z, t) and {u, v, 0} is the mean flow. The data obtained by Sillero et al. (2013) via
direct numerical simulations are used. We also study integral relations for channel flows
by using the data computed by Hoyas & Jiménez (2006) via direct numerical simulations.

3. Results
3.1. Derivation of the momentum-thickness law

It is first useful to review the derivation of the relationship between the skin-friction
coefficient and the momentum thickness for free-stream boundary layers. The Reynolds-
averaged x-momentum equation is

∂
∂y

(
u′v′ −

∂u
∂y

)
+ Ix = 0, where Ix(x, y) =

∂uu
∂x
+
∂u v
∂y
−
∂2u
∂x2 . (3.1)

Integrating (3.1) along y from 0 to∞ leads to

∂u
∂y

∣∣∣∣∣
y=0
= −

∫
∞

0
Ixdy = −

∫
∞

0

∂
∂x

(
uu −

∂u
∂x

)
dy (3.2)

because u′v′→0, v→0 and u→1 as y→∞. The limit of vanishing free-stream wall-normal
velocity is discussed in Appendix A. In this section and in §3.4, it is assumed that
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∂u′u′/∂x ≪ ∂u′v′/∂y because in a turbulent boundary layer the correlations u′u′ and
u′v′ are both comparable to the square of the wall-friction velocity u2

τ = (ν∗/U∗2∞)du∗/dy∗

and the derivative with respect to x is negligible relative to the derivatives with respect
to y in the limit of large Reynolds number. This assumption has been amply verified
numerically ever since the first direct numerical simulation of a spatially developing
boundary layer by Spalart & Watmuff (1993). By using the continuity equation, it follows
that

∂u
∂y

∣∣∣∣∣
y=0
= −

∫
∞

0

∂
∂x

(
uu +

∂v
∂y

)
dy = −

∫
∞

0

(
∂u u
∂x
+
∂u′u′

∂x

)
dy = −

∫
∞

0

∂u u
∂x

dy. (3.3)

By using the definition of momentum thickness

θ =

∫
∞

0
u(1 − u)dy, (3.4)

one finds
∂u
∂y

∣∣∣∣∣
y=0
=

d
dx

∫
∞

0
u(1 − u)dy =

dθ
dx
. (3.5)

Equation (3.5) can be written in terms of the skin-friction coefficient,

C f =
2ν∗

U∗2∞

∂u∗

∂y∗

∣∣∣∣∣
y∗=0
= 2

dθ∗

dx∗
, (3.6)

more commonly referred to in the literature as the von Kármán momentum integral
equation (Pope 2000). Further details of the derivation are found in Appendix A. By
integrating (3.6) along x∗, one finds

D
∗ = µ∗

∫ x∗2

x∗1

∂u∗

∂y∗

∣∣∣∣∣
y∗=0

dx∗ = ρ∗U∗2∞
(
θ∗2 − θ

∗

1

)
, (3.7)

whereD∗ is the drag per unit spanwise width along a streamwise interval x∗2 − x∗1, µ∗ is
the dynamic viscosity of the fluid and ρ∗ is the density of the fluid.

3.2. Simplification of the FIK identity
We rederive the FIK identify for a free-stream boundary layer following Fukagata et al.

(2002) with two important differences. The first difference is that Fukagata et al. (2002)
scaled y∗ by the boundary-layer thickness δ∗99, i.e. the wall-normal distance where the
streamwise mean velocity u∗ reaches 99% of the free-stream velocity U∗∞, while we scale
y∗ with ν∗/U∗∞. The second difference is that Fukagata et al. (2002) performed integration
along y from the wall to δ99, while we integrate from the wall to an unspecified location
h in the free stream and then take the limit h→∞.

Integrating (3.1) from 0 to y leads to

u′v′ −
∂u
∂y
+
∂u
∂y

∣∣∣∣∣
y=0
+

∫ y

0
Ixdŷ = 0. (3.8)

By further integrating (3.8) from 0 to y, one finds

y
∂u
∂y

∣∣∣∣∣
y=0
= −

∫ y

0
u′v′dŷ + u −

∫ y

0

∫ ỹ

0
Ixdŷdỹ. (3.9)
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Integration of (3.9) from 0 to h, where u = 1 and v = 0, gives

h2

2
∂u
∂y

∣∣∣∣∣
y=0
= −

∫ h

0

∫ y

0
u′v′dŷdy +

∫ h

0
udy −

∫ h

0

∫ y

0

∫ ỹ

0
Ixdŷdỹdy, (3.10)

and, by integrating by parts the first and the last term on the right-hand side of (3.10),
one finds

C f =
4
h2

∫ h

0
(y − h)u′v′dy︸                   ︷︷                   ︸
term 1

+
4
h2

∫ h

0
udy︸       ︷︷       ︸

term 2

−
2
h2

∫ h

0
(y − h)2Ixdy. (3.11)

Equation (3.11) coincides with the steady version of equation (15) in Fukagata et al. (2002)
if the wall-normal distance is scaled as y99 = y∗/δ∗99 and the upper bound h is set equal
to δ99, i.e.

C f =
4

Rδ

∫ 1

0
udy99 + 4

∫ 1

0

(
y99 − 1

)
u′v′dy99 − 2

∫ 1

0

(
y99 − 1

)2 Ixdy99 =

4(1 − δd)
Rδ

+ 4
∫ 1

0

(
y99 − 1

)
u′v′dy99 − 2

∫ 1

0

(
y99 − 1

)2 Ixdy99,

(3.12)

where Rδ = δ∗99U∗∞/ν∗ and the definition of displacement thickness, δd =
∫ 1

0 (1 − u)dy99,
has been used.

The terms on the right-hand side of (3.11) must not depend on the integration bound h
because the skin-friction coefficient on the left-hand side does not. The only requirement
is that the integration be conducted up to a sufficiently large location for the mean-flow
velocity to match the free-stream flow {U∗∞, 0, 0}. The bound h can therefore be taken
asymptotically large. By comparing the integration bounds in the original FIK identity
(3.12) with those in (3.11), it is evident that the choice of scaling y∗ with ν∗/U∗∞ instead of
δ∗99 allows us to perform the limit h→∞. In the limit h→∞, term 1 in (3.11) is null as the
integral involving the Reynolds stresses is finite because u′v′ is null in the free stream
and term 2 in (3.11) is null because the integral grows ∼h as y→∞ because u→1. Figure
1 shows the dependence of terms 1 and 2 on h. Term 1 in figure 1(a) decays to zero for
an h value that is much larger than the boundary-layer thickness because of the growth
of y− h inside the integral, although u′v′ is mostly contained within the boundary layer.
It follows that

C f = − lim
h→∞


2
h2

∫ h

0
y2Ixdy︸           ︷︷           ︸

term 3

−
4
h

∫ h

0
yIxdy︸        ︷︷        ︸

term 4

+ 2
∫ h

0
Ixdy︸      ︷︷      ︸

term 5


. (3.13)

Only term 5 in (3.13) is finite as h→∞ because terms 3 and 4 in (3.13) are null in this limit
as their integrals are finite because Ix is null in the free stream. The graphs (a), (b), (c) of
figure 2 display the change of terms 3, 4 and 5 with h. Terms 3 and 4 show an intense
dependence on h for h values comparable to the boundary-layer thickness, although
term 5 plateaus to a constant value as soon as the integration is performed up to the free
stream.

Equation (3.13) therefore simplifies to (3.2), which proves that, in the case of a free-
stream boundary layer, the FIK identity reduces to the von Kármán momentum equation
between the skin-friction coefficient and the momentum thickness, equation (3.6). The
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Figure 1: Dependence of term 1 (graph a) and term 2 (graph b) in (3.11) on the upper
integration bound h for free-stream boundary layers at two Reynolds numbers. The inset
of graph (a) shows the decay of term 1 at large h values. In this figure and in figure 2,
the data are from the direct numerical simulations of Sillero et al. (2013) and the vertical
lines indicate the wall-normal locations where h = δ99.

identity therefore loses its power of revealing the contribution of the different terms
of the x-momentum equation to the wall friction. Most notably, the Reynolds stresses
disappear from the identity. In the derivation of the FIK identity in channel or pipe
flows, no ambiguity exists about the integration bounds, which are fixed by the walls
and the centreline in the channel-flow case or the pipe axis in the pipe-flow case. In
the case of a free-stream boundary layer, the upper bound of integration is instead not
defined by the system geometry because the flow is unconfined. If a finite h value is used
as the upper integration bound, as performed in Fukagata et al. (2002) and subsequent
studies where the boundary-layer thickness δ∗99 was chosen, the contributions of the
different terms to the wall friction depend on h. However, this dependence is spurious
because their influence on the skin-friction coefficient must obviously be independent
of h. When h = δ99, one may be led to confirm the established result that the Reynolds
stresses impact significantly on the wall-shear stress by noting that the Reynolds-stress
term 1 is comparable to the skin-friction coefficient (C f = 3.03 × 10−3 for θ = 4000 and
C f = 2.71 × 10−3 for θ = 6500), as shown in figure 1(a). However, the non-physical
dependence of term 1 on h precludes the quantification of the effect of the Reynolds
stresses on the wall friction.

Xia et al. (2015) and Wenzel et al. (2022) performed only two wall-normal integrations,
instead of three as in Fukagata et al. (2002), stating that a twofold repeated integration
is more suitable for a physical interpretation. Wenzel et al. (2022)’s equation (3.7) in the
zero-Mach-number limit coincides with our (3.9) by setting y=h. Similarly to (3.11), the
twofold-integration identity also shows the spurious dependence on h and reduces to
the von Kármán momentum equation (3.6) as h→∞.

Sbragaglia & Sugiyama (2007) proved that, in the case of channel and pipe flows, the
weighing function 1−y in the integral involving the Reynolds stresses in the FIK identity
can be interpreted physically as the velocity gradient of the corresponding Stokes-flow
solution (this result was also used by Modesti et al. (2018)). As the corresponding Stokes-
flow solution cannot be obtained in the case of free-stream boundary layers, Sbragaglia
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Figure 2: Dependence of terms 3, 4, 5 in (3.13) (a,b,c, respectively) on the upper integration
bound h for free-stream boundary layers at two Reynolds numbers.

& Sugiyama (2007)’s result confirms our finding that the Reynolds-stress integral in
(3.11) does not possess a precise physical meaning for free-stream boundary layers.

3.3. Alternative FIK identities
Bannier et al. (2015) remarked that a third integration along y could be performed

before the final integration (3.10) up to y = h, thereby obtaining an alternative FIK
identity. As shown by Wenzel et al. (2022), an infinite number n of successive integrations
between 0 and y can in fact be performed before the final integration between 0 and h.
The result is

C f = −
2n
hn

∫ h

0
(h − y)n−1u′v′dy +

2n(n − 1)
hn

∫ h

0
(h − y)n−2udy −

2
hn

∫ h

0
(h − y)nIxdy.

(3.14)

The identities (3.14) are valid for n ⩾ 2. For n = 2, (3.14) is (3.11). For every n, the
identities (3.14) simplify to (3.2) as h→∞. In this limit, the first term on the right-hand
side of (3.14) is null because hn appears at the denominator and the integral is finite,
and the second term is null because the integral always grows more slowly than the
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Figure 3: Dependence of the skin-friction terms of (3.16) (solid lines) and the
asymptotic results of (3.20) (dashed lines) on the iterations n for Rb=5650 (thick lines,
Rτ=u∗τh∗c/ν∗=180, where u∗τ is the wall-friction velocity) and for Rb=87300 (thin lines,
Rτ=2004). The black, blue and red lines indicate C f , the terms depending on u′v′ and
the terms depending on u, respectively. The solid lines are computed using the direct
numerical simulation data of Hoyas & Jiménez (2006).

denominator hn. The third term in (3.14) is expanded by using the binomial theorem,

−
2
hn

∫ h

0
(h − y)nIxdy = −2

n∑
k=0

(
n
k

)
(−1)k

hk

∫ h

0
ykIxdy. (3.15)

As h→∞, the terms on the right-hand side of (3.15) for k , 0 vanish because the integrals
are finite, while the term for k = 0 in (3.15) is finite because it is independent of h. This
remaining term is (3.2). Further alternative formulas are found by multiplying (3.8) by
ym (m>0) before performing the subsequent integrations and again the final result is (3.2)
in the limit h→∞. The existence of alternatives to the original FIK identity for finite h and
the simplification of all of them to the von Kármán momentum equation (3.6) further
raises questions on the validity of this approach. The role of the terms in (3.1) on the
generation of the wall-shear stress cannot be quantified because the weighed influence
of the terms in (3.14) depends on n. This dependence on n is spurious because n is not a
physical parameter.

Identities analogous to (3.14) can be found for confined flows. For fully developed
channel flows, one finds

C f ,c

8(n + 1)
= −

∫ 1

0
(1 − yc)n−1u′cv′cdyc +

n − 1
Rb

∫ 1

0
(1 − yc)n−2ucdyc, (3.16)

where yc = y∗/h∗c, h∗c is the half-channel height, the velocity components are scaled by 2U∗b,
where U∗b is the bulk velocity, Rb = 2U∗bh∗c/ν∗ and C f ,c = (8/Rb)duc/dyc|yc=0. The identity
(3.16) is valid for n ⩾ 2. The identity found by Fukagata et al. (2002) is obtained for n=2
(they integrate to the upper wall in their (16)). In the laminar case, for which u′cv′c = 0
and uc = 3yc(2 − yc)/4, (3.16) is independent of n as the term containing uc simplifies
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and the identity reduces to the laminar C f ,c = 12/Rb. Amongst the n-family of identities
(3.16), only the identity obtained by Fukagata et al. (2002), found for n=2, possesses a
clear physical meaning in the turbulent-flow case because the term involving the mean
velocity uc in (3.16) reduces to the part of the skin-friction coefficient that pertains to a
laminar channel flow by using the definition of bulk velocity (this distinction does not
emerge directly in the case of a turbulent boundary layer as the wall friction of the Blasius
boundary layer is not retrieved in a single term in (3.11), as pointed out by Fukagata et al.
(2002)). For n=2, the term involving u′cv′c in (3.16) therefore univocally distils the effect
of the turbulence on the skin-friction coefficient. For n>2, the term containing uc cannot
be simplified and the laminar and turbulent contributions to the skin-friction coefficient
cannot be distinguished.

In order to study the asymptotic behaviour of (3.16) as n→∞, we write (3.16) as

C f ,c = −8(n + 1)
∫
∞

0
u′cv′ce

−nsds +
8(n2

− 1)
Rb

∫
∞

0
ucese−nsds, (3.17)

where s=−ln(1−yc). Appendix B shows that the limit of the integrals in (3.17) as n→∞ can
be moved inside the integrals because the integrands converge uniformly. We expand
u′cv′c ∼ sα1

∑
∞

k=0 a1kskβk as s→ 0+,

u′cv′c ∼Auv3y3
c + Auv4y4

c + O
(
y5

c

)
= Auv3

(
1 − e−s)3

+ Auv4
(
1 − e−s)4

+ ... =

s3
[
Auv3 +

(
Auv4 −

3Auv3

2

)
s
]
+ O

(
s5
)
,

(3.18)

where Auv3(Rb) and Auv4(Rb) are determined numerically. We expand uces
∼

sα2
∑
∞

k=0 a2kskβ2 as s→0+,

uces
∼

[
Au1yc + Au2y2

c + Au3y3
c + Au4y4

c + O
(
y5

c

)]
es =

Au1 (es
− 1) + Au2

(
es + e−s

− 2
)
+ Au3

(
es + 3e−s

− e−2s
− 3

)
+

Au4

(
es + 6e−s

− 4e−2s + e−3s
− 4

)
+ ... =

s
[
Au1 +

(Au1

2
+ Au2

)
s +

(Au1

3
+ Au3

)
s2 +

(Au1

24
+

Au2

12
−

Au3

2
+ Au4

)
s3
]
+ O

(
s5
)
,

(3.19)

where Au1 = du/dyc|yc=0, Au2 = 0.5d2u/dy2
c |yc=0, Au3 = (1/6)d3u/dy3

c |yc=0 and Au4 =
(1/24)d4u/dy4

c |yc=0. It follows that α1 = 3, β1 = 1, a10 = Auv3, a11 = Auv4 − 3Auv3/2, α2 = 1,
β2 = 1, a20 = Au1, a21 = Au2+Au1/2, a22 = Au3+Au1/3 and a23 = Au1/24+Au2/12−Au3/2+
Au4. According to Watson’s lemma (Bender & Orszag 1999), as n→∞,

C f ,c ∼ − 8(n + 1)
[
Γ(4)Auv3

n4 +
(
Auv4 −

3Auv3

2

) Γ(5)
n5 + ...

]
+

8(n2
− 1)

Rb

[
Γ(2)Au1

n2 +
(
Au2 +

Au1

2

) Γ(3)
n3 +

(
Au3 +

Au1

3

) Γ(4)
n4 +(

Au4 −
Au1

2
+

Au2

12
+

Au1

24

) Γ(5)
n5 + ...

]
∼

8
Rb

du
dyc

∣∣∣∣∣
yc=0
,

(3.20)

where Γ is the gamma function. The asymptotic analysis is useful because it proves
that, as n grows, the integral in (3.16) involving the Reynolds stresses impacts less
and less on the skin-friction coefficient because it behaves ∼ −48Auv3/n3, while the
term containing the mean flow becomes more and more relevant because it behaves ∼
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(8/Rb)du/dyc|yc=0 + 4
(
d2u/dy2

c |yc=0 + du/dyc|yc=0

)
/(Rbn). Figure 3 shows the skin-friction

terms as functions of n at two Reynolds numbers, computed numerically via (3.16) and
asymptotically via (3.20). As n→∞, no information on the physics of a turbulent channel
flow emerges from (3.16) as the Reynolds stresses vanish and the identity degenerates
to the definition of the skin-friction coefficient, C f ,c = (8/Rb)duc/dyc|yc=0. The asymptotic
behaviour (3.20) further proves that the channel-flow identity (3.16) only possesses a
defined physical meaning when n = 2.

Motivated by the studies of Xia et al. (2015) and Wenzel et al. (2022) on free-stream
boundary layers, we perform a twofold integration in the fully developed channel-flow
case. The result is

C f ,c =
16
Rb

uc(yc = 1) − 16
∫ 1

0
u′cv′cdyc. (3.21)

The identity (3.21) reduces to C f ,c = 12/Rb in the laminar case, i.e. when u′cv′c = 0 and
uc=3/4 at the centreline. Differently from the original FIK identity, relation (3.21) lacks
the virtue of univocally distinguishing the laminar and the turbulent contributions to
the skin-friction coefficient because uc(yc = 1) is the mean velocity at the centreline.
Nevertheless, it can be useful for checking numerical calculations and experimental
measurements of C f , computed directly via the wall-normal velocity gradient at the
wall or the mean streamwise pressure gradient, and indirectly via the u′cv′c profile and
the mean centreline velocity. It is found that (3.21) is also valid for pipe flows, in which
case yc = r∗/R∗, r∗ is the radial coordinate, R∗ is the pipe radius and Rb = 2U∗bR∗/ν∗

(C f ,c = 16/Rb is found in the laminar case as u′cv′c = 0 and uc=1 at the pipe axis). As the
Reynolds number increases, it is progressively more difficult to measure the wall-shear
stress via direct measurement of the wall-normal velocity gradient at the wall because
the near-wall turbulent length scales become smaller and the viscous sublayer thinner.
In the limit of large Reynolds number, it is instead easier to compute the skin-friction
coefficient via (3.21) because the measurements of the bulk velocity and the integrated
Reynolds stresses suffer progressively less from the large near-wall velocity gradients.
Furthermore, the identity (3.21) allows for a local skin-friction measurement, while
computing the wall-shear stress via the streamwise pressure gradient may require wall-
pressure measurements distributed along a long streamwise stretch. These comments
are also valid for the original identities by Fukagata et al. (2002). During the final revision
stages of the present work, we became aware that (3.21) was also discovered by Elnahhas
& Johnson (2022) for channel flows.

The FIK identity for planar Couette flow was obtained by Kawata & Alfredsson
(2019). It is worth noting that, in that case, the laminar and turbulent contributions to
the skin-friction coefficients were distinguished by integrating twice, while such a result
is attained by integrating thrice in the case of channel and pipe flows.

3.4. Skin-friction coefficient as a function of integral thicknesses

After verifying that the FIK identity (3.11) simplifies to the von Kármán momentum
equation (3.6), we follow the study of Renard & Deck (2016), who obtained an integral
identity for free-stream boundary layers where the interval of integration is unbounded.
The central idea is to decompose the momentum thickness (3.4) as the sum of integral
thicknesses in order to quantify the impact of each term in the mechanical energy
balance on the skin-friction coefficient, via (3.6), and on the wall-friction drag, via
(3.7). Differently from Renard & Deck (2016), we do not adopt the boundary-layer
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approximation, i.e. the term ∂2u/∂x2 is kept in the x-momentum equation (3.1). We
multiply (3.1) by u − 1 and integrate along y from 0 to∞ to find

C f = 2
∫
∞

0

∂u
∂y

(
∂u
∂y
+
∂v
∂x

)
dy+ 2

∫
∞

0
−u′v′

∂u
∂y

dy+ 2
∫
∞

0
−u v

∂u
∂y

dy+ 2
∫
∞

0
(u− 1)

∂u2

∂x
dy,

(3.22)
which may be written as

C f = E +P + C + S. (3.23)

The five terms in (3.23) can be interpreted from the perspective of an energy balance
(per unit time), by multiplying (3.23) by ρ∗U∗3∞, or, as a force balance, by multiplying
(3.23) by ρ∗U∗2∞. In the former case, the meaning of the terms is clear if the absolute
frame of reference is adopted, i.e. where the wall moves and the free stream is stationary
(Renard & Deck 2016). The left-hand side is the energy imparted by the moving wall
on the fluid, while the first term on the right-hand side is the energy dissipated into
heat by the viscous action of the mean flow, and the second term is the energy spent on
creating turbulence. The third and fourth terms represent the uptake of kinetic energy
of the fluid by the moving wall and are related to the growth of the boundary layer. The
convection term (C) is negative, which explains why blowing through the wall (positive
v) decreases the drag, while suction (negative v) increases the drag. The fourth term (S)
is named the streamwise-heterogeneity term (Fan et al. 2020).
In order to interpret the terms

E +P = 2
∫
∞

0

∂u
∂y

(
∂u
∂y
+
∂v
∂x

)
dy + 2

∫
∞

0
−u′v′

∂u
∂y

dy, (3.24)

we multiply (3.1) by u and integrate from zero to ∞. Following Schlichting & Gersten
(2003), we obtain

E +P =
dE
dx

(3.25)

where

E =

∫
∞

0
u
(
1 − u2

)
dy (3.26)

is the energy thickness. Note that E may be written as 2/∆, where ∆ is the dissipation
thickness (Hinze 1975), which is

∆ =

∫ ∞

0

(
∂u
∂y

)2

dy

−1

(3.27)

when the boundary-layer approximation (∂v/∂x≪ ∂u/∂y) is used in (3.24).
For the convection term

C = 2
∫
∞

0
−u v

∂u
∂y

dy, (3.28)

we use continuity and integration by parts to find

C = 2
∫
∞

0
u
∂u
∂y

∫ ŷ

0

∂u
∂x

dŷdy =
∫
∞

0

(
1 − u2

) ∂u
∂x

dy. (3.29)
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Equation (3.29) can be written as

C =
dC
dx

where C =

∫
∞

0
u
(
1 −

1
3

u2
)

dy. (3.30)

For the streamwise-heterogeneity term,

S = 2
∫
∞

0
(u − 1)

∂u2

∂x
dy, (3.31)

we note that

(u − 1)
∂u2

∂x
=
∂
∂x

[
u2

(2
3

u − 1
)]
. (3.32)

Hence

S =
dS
dx

where S = 2
∫
∞

0
u2

(2
3

u − 1
)

dy. (3.33)

By adding C and S, one finds

I = C + S =

∫
∞

0
u (1 − u)2 dy, (3.34)

which we term the inertia thickness. To summarize, we have,

E +P =
dE
dx

and C + S =
dI
dx
. (3.35)

It is verified that
2θ = E + I = E + C + S (3.36)

and

C f = 2
dθ
dx
=

dE
dx
+

dI
dx
=

dE
dx
+

dC
dx
+

dS
dx
, (3.37)

which is therefore a decomposition of the von Kármán momentum equation (3.6). The
terms of (3.23) and the integral lengths E, I and θ, extracted from the numerical data
of Sillero et al. (2013), are shown in figure 4. The first part of the relation (3.36), i.e.
the decomposition of θ into E and I, was found by Drela (2009) in the context of
aerodynamics of vehicles. In Drela (2009), the term I was not related to the boundary-
layer inertia terms, but it was instead linked to the kinetic-energy excess of the wake
behind a vehicle.

Similarly to the study of Renard & Deck (2016), equation (3.37) can be interpreted
in the absolute frame of reference, i.e. where the wall is in motion. Equation (3.37)
thus describes how the energy given by the wall motion to the fluid, measured by
twice the change of θ with the streamwise direction, is divided into the change of E,
representing the losses of mean kinetic energy due to the mean-flow viscous dissipation
into heat and to the production of turbulence, and the change of I, representing the
change in convective transport of the mean kinetic energy due to the mean velocity. The
change of I can in turn be expressed as the sum of the changes of the thicknesses C
and S, which represent the change in transport due to the wall-normal mean velocity
and the streamwise mean velocity, respectively. Referring to (3.7), we can now utilize
the streamwise integral of (3.37) to investigate what percentage of the different terms
in the RD decomposition contributes to the total drag by taking differences in the
corresponding integral thicknesses.

It is noted, however, that the RD decomposition (3.22) and identities emerging from
it, such as (3.37), do not distinguish the laminar and the turbulent contributions to
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Figure 4: (a) Decomposition of the skin-friction coefficient C f into the terms in (3.23): E
(red �), P (blue �), C (green �) and S (orange �). The magenta symbol � indicates the
sum of all four components on the right-hand side of (3.23). The black crosses indicate
C f obtained directly from the wall-shear stress data of Sillero et al. (2013). (b) Integral
lengths in (3.36): energy thicknessE (cyan �), inertia thickness I (red �) and momentum
thicknessθ (black crosses). The magenta symbol� indicates (E+I)/2. The x−axis is scaled
by x1, the coordinate of the first point. The momentum thickness θ at the six points is
4000, 4500, 5000, 5500, 6000, 6500. The data in this figure are obtained by post-processing
the results of the direct numerical simulations of Sillero et al. (2013).

the skin-friction coefficient for any flow, while the FIK identity achieves this task for
confined flows and the identity discovered by Elnahhas & Johnson (2022) does so for
free-stream boundary layers. As demonstrated by Renard & Deck (2016), the difference
in the skin-friction coefficient between a laminar and a turbulent boundary layer at the
same Reynolds number based on ∆ (for which E is identical) is dominated by P.

4. Conclusions
We have shown that the identity discovered by Fukagata et al. (2002), which expresses

the skin-friction coefficient of free-stream boundary layers as a function of integrated
terms of the Reynolds-averaged streamwise momentum equation, simplifies to the
von Kármán momentum integral equation relating the skin-friction coefficient and the
momentum thickness. This simplification arises as the upper integration bound along
the wall-normal direction is taken asymptotically large. If the upper bound is finite,
the weighted contributions of the terms of the streamwise momentum equation depend
spuriously on the bound itself. The family of infinite identities obtained by successive
integrations also reduces to the von Kármán momentum integral equation. The identities
for free-stream boundary layers with a finite integration bound, (3.14), are still useful for
checking, numerically or experimentally, that the integrated x-momentum terms equate
to the skin-friction coefficient computed via the wall-normal mean-velocity gradient
at the wall. A further check is to verify that such equality holds irrespectively of the
upper bound h, as long as the latter is located in the free stream, and of the number of
integrations n, as we have shown for channel flows in figure 2(d).
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For channel flows, only the original identity found by Fukagata et al. (2002) possesses
a physical meaning and we have proved that the infinite family degenerates to the
definition of skin-friction coefficient as the number of integrations grows asymptotically.
By a twofold integration, we have found an identity, valid for channel and pipe flows, that
links the skin-friction coefficient with the integrated Reynolds stresses and the centreline
mean velocity (the identity for channel flows was also discovered by Elnahhas & Johnson
(2022)).

In the formula of the momentum thickness written as the sum of an energy thickness
and an inertia thickness, we have expressed the latter as the sum of a thickness related
to the mean-flow wall-normal convection and a thickness linked to the mean-flow
streamwise inhomogeneity. This decomposition has been useful to further interpret
the skin-friction decomposition of Renard & Deck (2016) physically and for quantifying
the role of the different momentum-equation terms on the friction drag.
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Appendix A. Mean wall-normal velocity in the free stream
In the derivation of equation (3.2), the mean wall-normal velocity vanishes in the

free stream, i.e. v→0 as y→∞. The von Kármán momentum integral equation (3.6) is
instead obtained in Hinze (1975) by assuming that the wall-normal velocity approaches
a constant value (refer to his equation (7-8) on page 594 derived from the continuity
equation). Hinze (1975)’s assumption refers, however, to the first-order wall-normal
velocity in the free stream: a wall-normal pressure gradient exists in the free stream to
allow v→0 as y→∞. This adjustment is analogous to the second-order outer expansion
in the case of a laminar boundary layer, where the solution is given in terms of a
streamfunction obtained by complex-variable theory, as discussed in Van Dyke (1975)
on page 135.

Nevertheless, either choice for v in the free stream leads to (3.6). Integrating (3.1) along
y from 0 to ∞ without adopting the boundary-layer approximation and by assuming
limy→∞v=v∞,0 leads to

∂u
∂y

∣∣∣∣∣
y=0
+

d
dx

∫
∞

0
uudy + v∞ −

d
dx

∫
∞

0

∂u
∂x

dy = 0. (A 1)

Using the continuity equation and assuming that ∂u′u′/∂x ≪ ∂u u/∂x, the second term
and the third term in (A 1) merge and the fourth term is written using v∞, as follows

∂u
∂y

∣∣∣∣∣
y=0
=

d
dx

∫
∞

0
u(1 − u)dy −

dv∞
dx
. (A 2)
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Although Hinze (1975) assumed that v∞,0, the last term in (A 2) can be neglected because
it derives from ∂2u/∂x2 in (3.1), which is negligible if the boundary-layer approximation
is adopted, as on page 589 in Hinze (1975). In our analysis, (A 1) simplifies because v∞=0
and, although ∂2u/∂x2 is not neglected, the fourth term is null because it is equal to
the last term in (A 2). Equation (A 1) reduces to (A 2) because the second term in (A 1)
becomes the first term on the right-hand side of (A 2) as the null term −(d/dx)

∫
∞

0 udy
can be reintroduced in (A 1).

Appendix B. Uniform convergence of integrands in integral relation (3.16)
In order to take the limit of (3.17) as n→∞, we prove that the limiting operation can be

transferred inside the integrals by using the dominated convergence theorem (Zeidler
2012; Pryce 2014). Since the integration interval is finite and both integrand functions are
bounded in this interval, it is sufficient to prove that the integrands converge uniformly.
We first define fn = (yc−1)n−1u′cv′c. It is found that limn→∞ fn = f = 0 because (yc−1)n−1

→0
for every yc , 0 and u′cv′c(yc = 0) = 0. It follows that ∥ fn − f ∥∞ = supy∈[0,1] | fn|→0 as n→∞
because fn does so for every yc. The proof for the integrand (yc − 1)n−2uc is analogous as
(yc − 1)n−2

→0 for every yc,0 and uc(yc = 0) = 0.
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Hoyas, S. & Jiménez, J. 2006 Scaling of the velocity fluctuations in turbulent channels up to

Reτ=2003. Phys. Fluids 18, 011702.
Kametani, Y. & Fukagata, K. 2011 Direct numerical simulation of spatially developing turbulent

boundary layers with uniform blowing or suction. J. Fluid Mech. 681 (1), 154–172.
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