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Abstract

Xu, D. Ricco, P., Duan, L. “Decomposition of the wall-heat flux of compressible
boundary layers”, Physics of Fluids, 35, 035107 (2023).

We use the method developed by Elnahhas and Johnson (2022) and Xu et al. (2023)
for the decomposition of the skin-friction coefficient to integrate the mean temperature
equation for high-Reynolds-number compressible boundary layers and arrive at an identity
for the decomposition of the wall-heat flux. The physical interpretation of the identity
and the limitations of this approach are discussed. We perform an integration on the
mean temperature equation to obtain an identity that is the heat-transfer analogue to the
compressible von Kármán momentum integral equation for the skin-friction coefficient.
This identity is applied to numerical data for laminar and turbulent compressible boundary
layers, revealing that the mean-flow dissipation and production of turbulent kinetic energy
given by the Favre-Reynolds stresses dominate the thermal-energy balance. The term related
to the growth of the turbulent boundary layer opposes the wall cooling. Other identities for
the wall-heat flux, inspired by the method of Fukagata et al. (2002), are studied numerically
and by asymptotic methods. The terms of these identities depend spuriously on the upper
integration bound because this bound is a mathematical quantity used in the derivation.
When the bound is asymptotically large, the integral identities simplify to the heat-transfer
analogue to the von Kármán momentum equation. We also prove that an existing multiple-
integration identity reduces to the definition of the wall-heat flux when the number of
integrations is asymptotically large. No information about the wall-heat transfer is extracted
because the impact of the integration number is non-physical.
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1 Introduction

The wall-heat transfer of a turbulent boundary layer surpasses that of a laminar boundary layer
for the same external flow conditions. In compressible flows, this phenomenon is exacerbated
because of the aerothermal heating caused by the viscous effects at very high speeds (Van Driest,
1956; Hopkins and Inouye, 1971). Fundamental and applied research efforts have therefore been
devoted to the understanding of the heat-transfer mechanism near the wall and to the development
of flow control methods, mostly by wall heating and cooling, aimed at protecting the wall from
the excessive temperatures (Smits and Dussauge, 2006).

Huang et al. (2022) utilized direct numerical simulations to study the severe cooling of
hypersonic boundary layers at moderately high Reynolds numbers. The validity of the transfor-
mations by Van Driest (1956) and Spalding and Chi (1964), which relate the skin friction of a
compressible boundary layer to that of an incompressible boundary layer, was discussed. It was
found that the skin-friction values based on those transformations were in good agreement with
the correlations at Mach 2.5. However, for hypersonic cases with highly cooled walls, neither of
those theories provided a good prediction.

Empirical correlations involving the heat-transfer coefficient and the skin-friction coefficient
have also been used. A quantity of interest is the Reynolds analogy factor '0 = 2SC/C 5 (Roy and
Blottner, 2006), where SC is the Stanton number and C 5 is the skin-friction coefficient (Hopkins
and Inouye, 1971). The experimental measurement of '0 is an immense challenge because of
the difficulties related to the high gradients of velocity and temperature at the wall (Goyne et al.,
2003).

As alternatives to the direct measurement of wall friction and wall-heat transfer, integral
identities obtained from the momentum and energy balances have been developed. The identity
for the incompressible skin-friction coefficient discovered by Fukagata et al. (2002) (FIK) has
been widely utilized and extended to evince the impact of the Reynolds stresses on the wall
friction. For channel and pipe flows, the wall-shear stress is decomposed in the sum of the laminar
wall-shear stress and an integral involving theReynolds stresses. For free-stream boundary layers,
the identity includes an additional term related to the streamwise inhomogeneity of the flow and
the components of the decomposition depend on the upper bound of integration (Renard and
Deck, 2016; Ricco and Skote, 2022). To deepen the understanding of the skin friction in high-
speed flows, the FIK identity was extended to the compressible case by performing a three-fold
integration (Gomez et al., 2009) and a two-fold integration (Wenzel et al., 2022; Xu et al., 2022).
The wall-heat transfer was also investigated by using the FIK decomposition method. Zhang and
Xia (2020) utilized the two-fold integration method to study the heat-transfer integral equation
for turbulent channel flows. For free-stream boundary layers, Wenzel et al. (2022) (WGK) and
Xu et al. (2022) also used two-fold integration identities to investigate the decomposition of the
wall-heat transfer of compressible flows. The impact of the integration upper bound in the heat-
transfer integral formula was discussed by WGK. Barone et al. (2022) studied the decomposition
of the internal energy by using the method of WGK to study hypersonic turbulent boundary
layers.

Renard and Deck (2016) (RD) proposed an alternative identity based on the mean kinetic-
energy equation to give a quantitative physical explanation to the impact of the energy budget on
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the skin-friction coefficient of boundary-layer flows. The RD method was extended by Sun et al.
(2021) to study the heat-transfer coefficient of compressible boundary layers. This approach was
also utilized by Tong et al. (2022a) and Tong et al. (2022b). The RD method, in the wall-friction
case, offers a clear physical interpretation for each term in the identity and bears no issues related
to the upper bound because the wall-normal integration is unbounded. However, as discussed
in Zhang et al. (2022) and Xu et al. (2022), unlike the RD decomposition for the skin-friction
coefficient, the physical interpretation of the terms in the RD identity for the wall-heat flux is
not clear. The RD and FIK-like identities for the skin-friction and wall-heat transfer coefficients
in the case of free-stream boundary layers do not isolate the laminar coefficients, as instead
successfully done in the original FIK identity for channel and pipe flows.

Elnahhas and Johnson (2022) (EJ) derived an identity for the decomposition of the skin-
friction coefficient of incompressible boundary layers. They identified a quantity, function of
the streamwise direction, as a preferred wall-normal position inside the boundary layer around
which the angular momentum exerted by the flow is computed. The wall-normal integration
is unbounded and the identity isolates the skin friction of the laminar Blasius boundary layer.
Following the same theoretical method of EJ, Kianfar et al. (2022b) investigated the decomposi-
tion of the Stanton number in incompressible turbulent boundary layers. Their integral equation
for the heat-transfer coefficient bears full analogy with the integral equation for the skin-friction
coefficient when the Prandtl number is unity. Xu et al. (2023) used EJ’s method to study the
wall friction of compressible boundary layers and also investigated the impact of the wall-normal
integration bound in the existing compressible FIK-like identities. Kianfar et al. (2022a) obtained
an identity similar to that of Xu et al. (2023), although the impact of the change of viscosity due
to the temperature gradient on the skin friction was treated differently in the two formulations.
The wall-normal gradient of the mean viscosity was isolated in an integral term by Xu et al.
(2023), while a reference mean viscosity was used by Kianfar et al. (2022a).

In this paper, we study the impact of the energy-budget terms on the wall-heat flux of
compressible laminar and turbulent boundary layers. In §2, the Favre-averaged temperature
equation is discussed. In §3, we integrate the Favre-averaged temperature equation, following
the method of EJ and Xu et al. (2023) for the decomposition of the wall friction. The physical
interpretation and limitations of the resulting identity are discussed. In §4, we integrate the
temperature equation to obtain the heat-transfer analogue to the von Kármán momentum integral
equation. Numerical results based on the latter integral identity are presented for compressible
laminar and turbulent boundary layers. An evaluation of the existing FIK-like identities for the
wall-heat flux is found in §5, where the focus is on the dependence of those relations on the upper
integration bound and the number of successive integrations. Conclusions are presented in §6.

2 The temperature balance equation

We consider a two-dimensional compressible boundary layer over a flat plate, where G∗, H∗ and
I∗ are the streamwise, the wall-normal and the spanwise directions, respectively. The flat plate is
at H∗ = 0 and the leading edge of the plate is at G∗ = 0. The wall temperature )F is constant (the
subscript F denotes quantities at the wall). The Navier-Stokes equations and the energy equation
are scaled by the uniform free-stream velocity U∗∞ as the reference velocity and a length L∗ as
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the reference length scale. The temperature )∗, the density d∗, the dynamic viscosity `∗ and the
thermal conductivity ^∗ are scaled by their respective constant free-stream values, )∗∞, d∗∞, `∗∞
and ^∗∞. The time C∗ and the pressure ?∗ are scaled by L∗/U∗∞ and d∗∞U∗2∞ , respectively. The
specific heat capacity 2∗? is scaled by *∗2∞ /)∗∞. The asterisk ∗ indicates dimensional quantities,
while quantities without any symbol are non-dimensional.

Reynolds averaging a quantity @ over I along a distance LI and over C for a time interval T
is defined as

@̄(G, H) = 1
LIT

∫ T

0

∫ LI

0
@(G, H, I, C)dIdC. (2.1)

A Favre-averaged quantity is defined as 〈@〉 = d@/d̄ (Favre, 1965, 1992). The flow is decomposed
as

@(G, H, I, C) = @̄(G, H) + @′(G, H, I, C) = 〈@〉(G, H) + @′′(G, H, I, C). (2.2)

The Favre-averaged continuity, momentum and energy equations for compressible, statistical
two-dimensional flows are (Adumitroaie et al., 1999)

md̄〈D 9〉
mG 9

= 0,

m d̄〈D8〉〈D 9〉
mG 9

+
md̄〈D′′

8
D′′
9
〉

mG 9
= − m ?̄

mG8
+
mf̄98

mG 9
,

m d̄〈4〉〈D 9〉
mG 9

+
md̄〈4′′D′′

9
〉

mG 9
= − 1
(W − 1)'4%AM2

∞

mq̄9 ())
mG 9

+ m

mG 9
(D8f98 − ?D 9),


(2.3)

where 4 is the total energy

4 =
)

W(W − 1)M2
∞
+
D 9D 9

2
=
2?)

W
+
D 9D 9

2
, (2.4)

q9 ()) = −^m)/mG 9 is the heat flux, and the Mach number, the Reynolds number and the Prandtl
number are defined as

M∞ =
U∗∞√
WR∗)∗∞

, '4 =
d∗∞U∗∞L∗

`∗∞
, %A =

2∗?∞`
∗
∞

^∗∞
, (2.5)

where the ratio of specific heats is W = 2∗?/2∗E = 1.4, 2∗E denotes the specific heat capacity at
constant volume, and the ideal gas constant is R∗ = 287.05 J kg−1 K−1. The stress tensor is
f8 9 = (2`/'4)

[
(8 9 − ((::/3)X8 9

]
, where the stress rate is (8 9 = (mD8/mG 9 + mD 9/mG8)/2 and

X8 9 is the Kronecker delta. The Einstein summation convention is adopted to any Latin suffix
occurring twice in an expression. The Prandtl number and the specific heat capacities are constant
and therefore the scaled thermal conductivity ^ is equal to the scaled dynamic viscosity `.

From the total energy balance, expressed by the total energy equation in (2.3) and utilized
in detail by Van Driest (1951), various forms of the energy equation can be derived, such as
the total enthalpy/energy equation (WGK, Sun et al., 2021), the kinetic equation (Fan et al.,
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2022), the enthalpy equation, the internal equation (Xu et al., 2022; Barone et al., 2022) and the
temperature equation. It is instructive to discuss which of those forms of the energy balance
is the most appropriate one for our analysis. As the total enthalpy/energy balance does not
separate the internal energy and the kinetic energy, the total enthalpy/energy equation does
not uncover the energy exchanges among the components of the total energy, such as the heat
generation by the mean and turbulent viscous dissipations (Barone et al., 2022). The internal
energy equation or the temperature equation are instead more suited to study the heat transfer
within the flow, as they contain terms related to the generation and transfer of internal energy.
We choose to utilize the mean temperature equation in our heat-transfer study for three main
reasons. First, the temperature, which appears explicitly in the equation as the main unknown,
can be measured directly in an experiment. Second, the absence of the turbulent dissipation
term is an advantage because this quantity is very complicated to measure experimentally as
it involves correlations of the instantaneous spatial gradients of the velocity fluctuations (refer
to Andreopoulos and Honkan (2001) for incompressible boundary layers and Lapsa and Dahm
(2011) for compressible boundary layers). Third, the turbulent production term appears in
the equation in lieu of the turbulent dissipation term, as shown in equation (14) of Barone
et al. (2022) and equation (7-95d) in White (2006). This occurrence is convenient because the
turbulent production involves the Favre-Reynolds stresses and the mean-velocity gradient, which
are quantities that are more readily obtainable experimentally than the turbulent dissipation.
Furthermore, the direct role of the Favre-Reynolds stresses on the heat balance is revealed when
the production of turbulent kinetic energy is retained, while it would not be available if the total
energy equation were utilized.

In our integral analysis, we express the mean wall-heat flux as q̄F = −`Fm)̄/mH
��
H=0. It is

useful to discuss why we choose not to scale the wall-heat flux by using the Stanton number or
the Nusselt number. The Stanton number was used by Kianfar et al. (2022b) in their identity
involving thewall-heat transfer in incompressible turbulent boundary layers. The Stanton number
for compressible boundary layers, given in equation (6.63) in Anderson (2000), is defined as

SC =
^∗F

d∗∞U∗∞2∗?∞()∗03 − )
∗
F )
m)̄∗

mH∗

����
H∗=0

=
^F

()03 − )F )'4 %A
m)̄

mH

����
H=0

=
−q̄F

()03 − )F )'4 %A
, (2.6)

where )03 denotes the adiabatic wall temperature, ¯̂ = ^F at H = 0 since the wall is isothermal
(m)̄∗/mH∗ is instead different from m)∗/mH∗ as the temperature-gradient disturbances are not null
at the wall). The Nusselt number is defined as

ND =
G∗^∗F

^∗∞()∗03 − )
∗
F )
m)̄∗

mH∗

����
H∗=0

= SC'4G%A, (2.7)

where '4G = d∗∞*∗∞G∗/`∗∞. It is noted that, as discussed in Anderson (2000) on page 298, the
Stanton and Nusselt numbers have finite values at any Mach number in the adiabatic wall case
despite their indefinite forms, given by m)̄∗/mH∗ |H∗=0 = 0 at the numerator and )∗

03
− )∗F = 0 at

the denominator. As we are interested in the physics of heat transfer in boundary layers, it is
important in our study to obtain an integral relation where the constituent terms balance out to
produce a null wall-heat flux in the adiabatic wall case and not a finite value as in the case of the
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Stanton and Nusselt numbers. The Stanton and Nusselt numbers are more useful in empirical
correlations as the wall-heat convection coefficient can be readily computed as a function of '4G ,
%A andM∞.

In deriving the mean temperature equation used in our analysis, we follow Van Driest (1951),
who simplified the total energy equation (2.3). The disturbance terms D′2 and E′2 are assumed
to be negligibly small compared to D̄2 and all the triple correlations are also neglected. In
the limit of large Reynolds number, the boundary layer is assumed to be thin and, therefore,
m (dD) ′) ′/mG � m (dD) ′) ′/mH and mD̄/mG, mĒ/mH, mĒ/mG are all negligible with respect to
mD̄/mH. Van Driest (1951) neglected the mean heat conduction and the viscous heat generation,
but we retain these effects because our focus is on the large heat flux at the wall and on the
heat generation, which is significant at high Mach numbers. We have also verified numerically
that term m

(
`′m) ′/mH

)
/mH is very small in the boundary layer (it is zero at the isothermal

wall because `′ = 0). The flow is free from pressure-gradient effects, which could be studied
by retaining the term D̄d?̄/dG. The resulting equation, also given as (7-95d) in White (2006),
rewritten in Favre-averaged form, reads

md̄〈)〉〈D〉
mG

+ md̄〈)〉〈E〉
mH

+ md̄〈E
′′) ′′〉
mH

− 1
'4%A

m

mH

(
¯̀
m)̄

mH

)
−M

2
∞(W − 1)
'4

¯̀
(
mD̄

mH

)2
+M2

∞(W − 1) d̄〈D′′E′′〉 mD̄
mH

= 0. (2.8)

The first two terms represent the convective transport by the mean flow, the third term denotes
the turbulent heat transport, the fourth term is the mean heat conduction, the fifth term is the heat
generation caused by the mean velocity gradient and the last term is the production of turbulent
kinetic energy. The turbulent kinetic energy budget for a hypersonic boundary layer (figure 14 in
Zhang et al. (2018)) shows that the production of turbulent kinetic energy balances the viscous
dissipation of turbulent kinetic energy into heat.

3 Extension of Elnahhas-Johnson method to the wall-heat flux balance

By using the temperature equation (2.8), we extend the method of EJ and Xu et al. (2023) for the
decomposition of the wall-friction coefficient to derive an identity for the decomposition of the
wall-heat flux. Subtracting the continuity equation, given by the first equation (2.3), from (2.8)
leads to the temperature deficit equation,

m (〈)〉 − 1) d̄〈D〉
mG

+ m (〈)〉 − 1) d̄〈E〉
mH

+ md̄〈E
′′) ′′〉
mH

− 1
'4%A

m

mH

(
¯̀
m)̄

mH

)
−M

2
∞(W − 1)
'4

¯̀
(
mD̄

mH

)2
+M2

∞(W − 1) d̄〈D′′E′′〉 mD̄
mH

= 0. (3.1)
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The energy integral equation is obtained by multiplying (3.1) by H −L and integrating from 0
to∞, where L is a length to be determined. Dividing the results by L /('4 %A) leads to

q̄F = −`F
m)̄

mH

����
H=0

= − 1
L︸︷︷︸
q̄;

+ `F)F
L

+ 1
L

∫ ∞

0

m ¯̀
mH
)̄dH︸                           ︷︷                           ︸

q̄ ¯̀

−%AM2
∞(W − 1)

∫ ∞

0

(
1 − H

L

)
¯̀
(
mD̄

mH

)2
dH︸                                                   ︷︷                                                   ︸

q̄D

+ '4%AM2
∞(W − 1)

∫ ∞

0

(
1 − H

L

)
d̄〈D′′E′′〉 mD̄

mH
dH︸                                                          ︷︷                                                          ︸

q̄CDA

+ '4%A
L

∫ ∞

0
d̄〈E′′) ′′〉dH︸                        ︷︷                        ︸

q̄ℎ

+ '4%A ()F − 1)
d\)L
dG
− '4%A ()F − 1)

L

(
\) − \)L

) dL

dG︸                                                                  ︷︷                                                                  ︸
q̄
\)

+ '4%A ()F − 1)
L

\)E︸                 ︷︷                 ︸
q̄
\)E

, (3.2)

where

\) (G) ≡
∫ ∞

0

〈)〉 − 1
)F − 1

d̄〈D〉dH (3.3)

is the enthalpy thickness,

\)L (G) ≡
∫ ∞

0

(
1 − H

L

) 〈)〉 − 1
)F − 1

d̄〈D〉dH (3.4)

is the thermal boundary-layer thickness defined by L , and

\)E ≡
∫ ∞

0

〈)〉 − 1
)F − 1

d̄〈E〉dH. (3.5)

is the thermal thickness related to the mean wall-normal velocity. Note that, as in the identity
(14) derived by Kianfar et al. (2022b) for the incompressible heat-transfer case, )F − 1 appears
as a multiplicative factor in the terms q̄\) and q̄\)E in order to define the thicknesses \) , \)L ,
and \)E .

In (3.2), term q̄; is the laminar wall-heat flux, term q̄ ¯̀ indicates the contribution of the mean
flow due to the variation of viscosity, term q̄D represents the mean-flow dissipation and term
q̄CDA quantifies the production of turbulent kinetic energy by the Favre-Reynolds stresses. Term
q̄ℎ is due to the turbulent heat flux, while the remaining terms are related to the non-parallel
mean convective transport, i.e. q̄\)E is due to the wall-normal velocity and q̄\) is due to the
spatial evolution of the momentum thickness and the length L . When the heat-transfer identity
(3.2) is compared to the compressible skin-friction identity, given by (2.15) in Xu et al. (2023),
we note that the first term of q̄ ¯̀ in (3.2) bears no analogue in the skin-friction identity because
the no-slip condition renders that term null in the momentum case, while )F is always a finite
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quantity. Analogues to the terms proportional to the Mach number in (3.2), i.e. q̄D and q̄CDA ,
are absent in the skin-friction identity because no generation of momentum occurs in that case.

Similarly to the derivation of the skin-friction identities (EJ, Xu et al. (2023)), the key step is
to choose the length scale L (G) in such a way to render q̄;, the first term on the right-hand side
of (3.2), equal to the wall-heat flux of the laminar boundary layer. This procedure is discussed
in Appendix A. The length scale is found to be:

L (G) =
√

2G/'4 )F
`F d)/d[ |[=0

, (3.6)

where [ is the similarity coordinate for the laminar Blasius flow, defined in equation (A.2).
We now discuss a number of issues that arise when identity (3.2) is used for compressible

boundary layers. We first note that, in the adiabatic wall case, even though the wall-heat flux
is null, the exchanges of thermal energy within the boundary layer are nevertheless significant,
especially in the hypersonic regime. However, in the adiabatic wall case, the length (3.6) is
infinite because d)/d[ |[=0 is zero and therefore terms q̄;, q̄ ¯̀ , q̄ℎ and q̄\)E in (3.2) vanish
because L appears at the denominators in those terms. The most relevant loss of information is
certainly given by the absence of q̄ℎ, i.e. it is not possible to quantify the role of the turbulent
transport term 〈E′′) ′′〉 in the heat-transfer balance.

We pointed out in §2 that scaling the wall-heat flux by the Stanton number or the Nusselt
number is not suitable because, in the adiabatic wall case, these numbers are finite while
q̄F = 0 and therefore the physics of wall-heat transfer is not represented properly. If these
non-dimensional numbers were nevertheless used to express the wall-heat flux in identity (3.2),
the adiabatic wall case could only be treated mathematically in the limit of vanishingly small
wall-heat flux because SC would be proportional to the ratio of d)/d[ |[=0 and )03 − )F , which
are both null.

Further problems arise for a hypersonic boundary layer subjected to intense wall cooling. In
this case, L becomes very small because, in (3.6), )F is small at the numerator and d)/d[ |[=0
is large at the denominator. In the limit of asymptotically small L , all the terms in (3.2) become
asymptotically large and it is thus not clear whether the balance expressed in the identity is
representative of the heat-transfer physics.

Thoughts are also due about the interpretation of term q̄ℎ in (3.2), involving the turbulent
transport term 〈E′′) ′′〉. As amply verified over a large range of Mach numbers and wall-heat-
transfer conditions, the turbulent Prandtl number is between 0.8 and 1 across the boundary layer
(Huang et al., 2022), which means that −〈E′′) ′′〉 and m〈)〉/mH have the same sign at any wall-
normal location because −〈D′′E′′〉 and m〈D〉/mH are always positive. In hypersonic wall-cooling
conditions, −〈E′′) ′′〉 is positive near the wall and thus gives a direct contribution to the positive
wall-temperature gradient there, analogous to the role played by the Favre-Reynolds stresses
−〈D′′E′′〉 on the wall friction. However, beyond this thin heat-conduction thickness, m〈)〉/mH
changes sign because of the viscous heat-generation effect, and so does −〈E′′) ′′〉. As the Mach
number grows, the near-wall heat-conduction region becomes progressively thinner than the core
of the thermal boundary layer where the heat generation dominates the energy balance. It follows
that the integral contribution of d̄〈E′′) ′′〉 near the wall may be less significant than that in the
boundary-layer core. The sign of q̄ℎ, i.e. the wall-normal integrated effect of d̄〈E′′) ′′〉, may
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Figure 1: (0) Temperature distributions of laminar boundary layers at different Mach numbers
and wall-cooling conditions. (1) Ratio () − 1)/()F − 1) for the same flow conditions.

thus be positive, i.e. opposite to that of the cooling heat transfer at the wall. The integration may
obscure the impact of 〈E′′) ′′〉 near the wall and lead to the conclusion that 〈E′′) ′′〉 is not relevant
for the wall-heat transfer mechanism. Further research on the integrated effect of 〈E′′) ′′〉 is
certainly needed.

Another issue concerns the enthalpy thickness \) , defined in (3.3), and appearing in term
q̄\) of the identity (3.2). Kays and Crawford (1993) and Schlichting and Gersten (2016) suggest
the use of the enthalpy thickness as a measure of the wall-normal extent of the thermal boundary
layer for low-speed flows, i.e. for flows where the exchange of thermal energy is only produced
by the wall-heat flux and the viscous heat-generation is negligible. As shown in figure 1, in
wall-cooling cases atM∞ = 0 andM∞ = 2.5, the ratio (〈)〉 − 1)/()F − 1) is always positive
and thus the integral defining \) is representative of the thermal-layer thickness. However, in
the case of a hypersonic boundary layer, where heat generation by viscous dissipation plays a
leading role in the energy balance, the enthalpy thickness can fail to represent the thermal-layer
thickness. We note that, at high Mach numbers with )F = 1, the thermal boundary layer does
exist, but the enthalpy thickness is not defined because of the singular denominator )F − 1.
Furthermore, figure 1 shows that, in a laminar case withM∞ = 10.9 and intense wall cooling
()F < 1), the ratio (〈)〉 − 1)/()F − 1) is negative except very near the wall. Since d̄ and 〈D〉 are
always positive, it follows that \) , the integrated product of these three quantities, is negative
and thus it does not represent the wall-normal region where temperature gradients are finite. We
have indeed not been able to find in the literature any study where the enthalpy thickness has
been employed to investigate hypersonic wall-bounded flows in cooling conditions. We conclude
that the use of the enthalpy thickness in the identity (3.2) is questionable in these extreme cases.
Similar reasoning pertains to the other two thermal thicknesses involved in the integral balance
(3.2), i.e. \)L and \)E .

In the case of wall heating, the wall-heat flux q̄F is positive and thus the length L is
negative as it has the same sign of d)/d[ |[=0. The Reynolds number based on L , as defined
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in EJ, Xu et al. (2023) and Kianfar et al. (2022b), would be negative and therefore meaningless.
Furthermore, a negativeL refers to a wall-normal location under the wall surface and, therefore,
it is questionable how the physical interpretation of the wall-friction identity based on the angular
momentum, put forward by EJ, could be reinterpreted in this case. At this point, it is not clear
how the angular-momentum interpretation, used by EJ to explain the momentum balance, could
be extended in the wall-heat flux case for any wall boundary conditions and Mach numbers.

One idea to avoid the negativeL would be to use the sameL adopted in the derivation of the
identity for the skin-friction coefficient. At first, this choice appear to be physically reasonable
because the transfers of momentum and thermal energy are fully coupled in the compressible
regime. However, the first term on the right-hand side of identity (3.2) would not represent
the contribution of the laminar wall-heat flux. This result is a major shortcoming because the
isolation of the laminar contribution is a unique feature of EJ’s method.

Most of the issues just discussed do not however pertain to the identity (14) derived by
Kianfar et al. (2022b), who investigated the heat transfer in an incompressible boundary layer. In
that case, the energy equation in the incompressible regime is an independent transport equation,
decoupled from the continuity and momentum equations, as the temperature behaves a passive
scalar. We note, for example, that the identity equation (14) in Kianfar et al. (2022b) does
not involve the mean-flow viscosity term −'4−1 ¯̀(mD̄/mH)2 and the Favre-Reynolds stress term
d̄〈D′′E′′〉mD̄/mH because those terms are proportional to the Mach number, which is null for the
flow conditions studied by Kianfar et al. (2022b).

4 The direct integration method

A compressible temperature integral equation is obtained by integrating (3.1) from 0 to ∞ and
multiplying both sides by '4%A. The wall-heat flux becomes

q̄F = −`F
m)̄

mH

����
H=0

= '4%A
d
dG

∫ ∞

0
(〈)〉 − 1) d̄〈D〉dH︸                                   ︷︷                                   ︸
q̄)
\

−%AM2
∞(W − 1)

∫ ∞

0
¯̀
(
mD̄

mH

)2
dH︸                                      ︷︷                                      ︸

q̄D

+ '4%AM2
∞(W − 1)

∫ ∞

0
d̄〈D′′E′′〉 mD̄

mH
dH︸                                            ︷︷                                            ︸

q̄CDA

. (4.1)

To the best of our knowledge, identity (4.1) has never been used to study the wall-heat flux.
We note that term q̄)

\
is written without using the enthalphy thickness because this quantity

may not represent the thickness of the thermal boundary layer in some case hypersonic cases,
as discussed in §3. Equation (4.1) for the wall-heat transfer is analogous to the von Kármán
momentum integral equation for the skin friction,

� 5 = 2
d\
dG
, (4.2)

where � 5 = 2g∗F/
(
d∗∞U∗2∞

)
is the skin-friction coefficient, g∗F is the time and spanwise-averaged

wall-shear stress, and \ =
∫ ∞

0 d〈D〉(1− 〈D〉)dH is the momentum thickness. Identity (4.2) is valid
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for compressible boundary layers with a uniform free-stream flow and in the high-Reynolds-
number limit (refer to equation (7-60) in White (2006) for the generalized case with pressure
variations and non-uniform free stream). Identity (4.1) is also obtained by taking the limit
L → ∞ in (3.2), as discussed in Appendix A. The Favre-Reynolds stresses appear in (4.1),
while they are absent in the von Kármán momentum equation (4.2). Their role is however
different in the two cases, i.e. production of kinetic energy (balanced by the heat generation
via viscous turbulent dissipation) in (4.1) and direct contribution to the skin friction in the
momentum equation, from which (4.2) is derived. Analogous to the von Kármán momentum
equation, the turbulent transport correlation 〈E′′) ′′〉 is absent from the balance (4.1) and the
laminar contribution to the wall-heat transfer is not isolated. The domain of integration in (4.1)
is unbounded, while the upper bound instead plays a role in the FIK-like identities discussed in
§5.

For incompressible boundary layers, i.e. M∞ → 0, the wall-heat flux becomes

q̄F = '4%A ()F − 1) d\
)

dG
, (4.3)

usually written in the literature as SC = d\) /dG (Kays and Crawford, 1993) (note that )03 in
(2.6) simplifies to unity when M∞ → 0). The enthalphy thickness \) may be used in (4.3)
because it is representative of the thickness of the thermal boundary layer in the incompressible
case (Kays and Crawford, 1993). The mean-flow dissipation and the Favre-Reynolds stresses
give no contribution to the wall-heat flux in the incompressible case. For hypersonic boundary
layers at very large Mach numberM∞ � 1, the first and second terms on the right-hand side of
equation (4.1) are of order O

(
M2
∞
)
. However, the first term on the right-hand side of equation

(4.1) cannot be neglected because it involves the mean temperature, which also grows withM2
∞.

In the hypersonic limitM∞ � 1, the boundary-layer assumption may not be valid because of
the thickening of the boundary layer (Anderson, 2000) and therefore the terms neglected in the
derivation of identity (4.1) may have to be reinstated.

An alternative von Kármán-type integral equation for the wall-heat transfer can be derived
by using the total energy equation, i.e. (7-103) in White (2006), showing that the wall-heat
transfer is induced by the loss or gain of total energy. The main difference between (7-103)
in White (2006) and our (4.1) is the neglect of our mean-flow dissipation term q̄D and the
Favre-Reynolds-stress production term q̄CDA , which cannot be disregarded whenM∞ = O(1).
The thermal-energy-integral equation (10.94) in Schlichting and Gersten (2016) is only valid for
laminar boundary layers, whereas our identity (4.1) can be utilized for high-Reynolds-number
wall-bounded flows at any regime.

4.1 Wall-heat flux of laminar boundary layers

We first present the decomposition of the wall-heat flux in compressible self-similar laminar
boundary layer with Mach numbers ranging between 2.5 and 10.9. Boundary layers at Mach
number 10.9 have been studied experimentally on cold walls ()F/)03 = 0.2) at the Calspan-
University of the Buffalo Research Center (Gnoffo et al., 2011) and via direct numerical sim-
ulations (Huang et al., 2022). The dynamic viscosity is related to the temperature through
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M∞ )∗∞ (K) )∗
03

(K) )∗F/)∗03
2.5 270.0 270.0 1.0
4.9 66.2 348.4 0.91
7.87 51.8 620.8 0.48
10.9 66.5 1500 0.2

Table 1: Free-stream and wall temperature conditions.

Sutherland’s law (Stewartson, 1964). For a laminar boundary layer, the decomposition (4.1)
simplifies to

q̄F = −
%AM2

∞(W − 1)
B(G)

∫ ∞

0

`

)

(
d*
d[

)2
d[︸                                        ︷︷                                        ︸

q̄D

+ %A
B(G)

∫ ∞

0
() − 1)*d[︸                        ︷︷                        ︸

q̄
\)

, (4.4)

where B(G) =
√

2G/'4. Equation (4.4) can also be obtained by integrating the energy equation
in (A.3). For the case of a self-similar Blasius laminar boundary layer, identity (4.4) can
be simplified by defining q̄F,' = B(G)q̄F . The effects of the streamwise coordinate and the
Reynolds number are thus excluded, while information about the heat-transfer physics is retained.

The flow parameters used to study identity (4.4) are listed in table 1. Figures 2(a) and 2(b)
present the dependence of d2�/d[2

��
[=0 and d)/d[ |[=0 on )F/)03 . The quantity d2�/d[2

��
[=0

is influenced the most by )F/)03 forM∞ = 10.9. The gradient d)/d[ |[=0 grows significantly
with theMach number in the wall-cooling cases. Figures 2(c) and 2(d) display the decomposition
of q̄F,' for a supersonic case (M∞ = 2.5) and a hypersonic case (M∞ = 10.9), respectively.
For 0≤)F≤6, wall cooling and wall heating are studied forM∞ = 2.5, while only wall cooling
is studied for M∞ = 10.9. For both Mach numbers, the contribution of the dissipation term
B(G)q̄D depends only mildly on )F , while the spatial-growth term B(G)q̄\) is more significantly
influenced by )F . In the wall-cooling cases, the spatial-growth term B(G)q̄\) opposes the wall-
heat transfer (except for extremely low wall temperatures), while the dissipation term B(G)q̄D
increases the wall-heat transfer.

4.2 Wall-heat flux of turbulent boundary layers

The decomposition of the wall-heat flux for fully-developed turbulent boundary layers is studied
by using the direct numerical simulation data of Huang et al. (2022). We choose the local density
boundary thickness X∗

d99 as the reference length for this analysis, as explained in Appendix A.
The Reynolds number is thus 'X = d∗∞X∗d99U

∗
∞/`∗∞.

Figure 3 presents the magnitudes of the terms in the identity (4.1) at three Reynolds numbers
for M∞ = 10.9 with a cooled wall. The terms q̄D and q̄CDA dominate the balance and have
the same sign of the wall-heat flux. Term q̄\) is instead opposed to the wall-heat flux. Over
this range, the Reynolds number of the turbulent boundary layer only has a small impact on the
relative contributions of each term to the wall-heat flux. Figure 4 presents the magnitudes of
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Figure 3: Decomposition of the heat-transfer coefficient q̄F into the terms of (4.1) for turbulent
boundary layers. The numerical data are from the direct numerical simulations by Huang et al.
(2022) atM∞ = 10.9 (wall-cooling case). The Reynolds numbers are 'X = 566533 (blue),
'X = 722422 (red) and 'X = 930733 (yellow).

the terms in the identity (4.1) at three Reynolds numbers at M∞ = 2.5 for vanishingly small
wall-heat flux. The mean-flow dissipation and the turbulent kinetic energy production by the
Favre-Reynolds stresses are neutralized by the growth of the thermal boundary layer.

Zhang and Xia (2020) reported that, for subsonic and supersonic channel flows with cooled
walls, the energy dissipation into heat is also the dominant effect in the heat-transfer physics,
although they did not separate the mean-flow dissipation and the turbulent dissipation from
the total dissipation. Zhang and Xia (2020) also found that the dissipation term gives a 90%
contribution to the total wall-heat flux because of the absence of the streamwise inhomegeneity
in their channel-flow cases.

5 Simplification of alternative Fukagata-Iwamoto-Kasagi identities

Wenzel et al. (2022) and Barone et al. (2022) showed that all the FIK-like identities for the skin-
friction coefficient of free-stream boundary layers depend on the upper bound of integration. In
this section, we study how the upper integration bound impacts the two-fold identities derived
by Wenzel et al. (2022) and Xu et al. (2022) for the decomposition of the wall-heat flux. We also
investigate how the number of successive integrations used in the multifold identity derived by
Wenzel et al. (2022) influences the relative contribution of the terms in the identity.
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Figure 4: Decomposition of the heat-transfer coefficient q̄F into the terms of (4.1) for turbulent
boundary layers. The numerical data are from the direct numerical simulations by Huang et al.
(2022) atM∞ = 2.5 (adiabatic wall case). The Reynolds numbers are 'X = 71606 (blue),
'X = 89863 (red) and 'X = 114564 (yellow).

5.1 Simplification of the two-fold Wenzel-Gibis-Kloker identity

Integrating the energy equation (2.8) from 0 to H and multiplying both sides by 'X%A lead to

'X%A d̄〈E′′) ′′〉 − ¯̀
m)̄

mH
+ `F

m)̄

mH

����
H=0
+ 'X%AM2

∞(W − 1)
∫ H

0
d̄〈D′′E′′〉 mD̄

mH
dH

−%AM2
∞(W − 1)

∫ H

0
¯̀
(
mD̄

mH

)2
dH + 'X%A

∫ H

0
�GdH = 0. (5.1)

where

�G =
md̄〈)〉〈D〉

mG
+ md̄〈)〉〈E〉

mH
. (5.2)

Integrating (5.1) from 0 to a wall-normal location ℎ in the free stream, i.e. where )D= 1 and )E=
0, leads to

− ℎ`F
m)̄

mH

����
H=0

= 'X%A

∫ ℎ

0
d̄〈E′′) ′′〉dH −

∫ ℎ

0
¯̀
m)̄

mH
dH − %AM2

∞(W − 1)
∫ ℎ

0
(ℎ − H) ¯̀

(
mD̄

mH

)2
dH

+ 'X%AM2
∞(W − 1)

∫ ℎ

0
(ℎ − H) d̄〈D′′E′′〉 mD̄

mH
dH + 'X%A

∫ ℎ

0
(ℎ − H)�GdH. (5.3)
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Dividing (5.3) by ℎ leads to

q̄F =
'X%A

ℎ

∫ ℎ

0
d̄〈E′′) ′′〉dH︸                        ︷︷                        ︸

Term 1

−1
ℎ

∫ ℎ

0
¯̀
m)̄

mH
dH︸              ︷︷              ︸

Term 2

+ 'X%AM
2
∞(W − 1)
ℎ

∫ ℎ

0
(ℎ − H) d̄〈D′′E′′〉 mD̄

mH
dH︸                                                      ︷︷                                                      ︸

Term 3

−%AM
2
∞(W − 1)
ℎ

∫ ℎ

0
(ℎ − H) ¯̀

(
mD̄

mH

)2
dH︸                                                ︷︷                                                ︸

Term 4

+ 'X%A
ℎ

∫ ℎ

0
(ℎ − H)�GdH︸                         ︷︷                         ︸

Term L

, (5.4)

where the last term can be decomposed as

Term L =
'X%A

ℎ

∫ ℎ

0
(ℎ − H)�GdH =

'X%A

ℎ

∫ ℎ

0
ℎ�GdH︸                 ︷︷                 ︸

Term 5

−'X%A
ℎ

∫ ℎ

0
H�GdH︸                   ︷︷                   ︸

Term 6

. (5.5)

The terms on the right-hand side of (5.4) depend on the integration bound ℎ, as shown in figure
2 of Barone et al. (2022). There is no fixed rule on how to choose the upper integration bound
ℎ, except that it must correspond to a location where the mean-flow temperature matches the
uniform free-stream temperature and the mean boundary-layer velocity matches the uniform and
wall-parallel free-stream velocity.

Figure 5 presents the dependence of terms 1-6 in equations (5.4) and (5.5) on the upper
bound of integration. The vertical line denotes the location where the density is equal to 99%
of the free-stream value. The heat-transfer coefficients obtained by the two-fold integration
identities, given by (A4) in WGK and by (3.9) in Xu et al. (2022), are based on the equations of
total enthalpy and internal equations, respectively. The wall-heat flux is instead derived here by
using the temperature equation. All the terms are found to depend heavily on the upper bound
ℎ. Terms 1 and 2 vanish when the upper bound ℎ is large, which indicates that this limit rules
out the turbulent heat flux and the mean-flow heat transfer from the identity. The remaining
contributions are from term 3, involving the the Favre-Reynolds stresses, term 4, related to the
mean-flow velocity, and term 5, part of the non-homogeneous term. The present results are
consistent with figure 16 of Barone et al. (2022). Their turbulent term �)H is our term 1 in which
we neglect the high-order terms according to the boundary-layer assumption (White, 2006). The
combination of terms ��H and ��G is equivalent to the sum of terms 5 and 6 here. As shown by
Barone et al. (2022), if the upper bound of integration ℎ becomes larger, term 1 decreases but
the combination of ��H and ��G increases.

Figure 6(a) compares the contributions of the streamwise-inhomogeneous term L with that
of the turbulent-heat-transport term 1, while figure 6(b) compares the contributions of the Favre-
Reynolds-stress term 3 with that of the mean-flow dissipation term 4. As the upper integration
bound increases, the turbulent-heat-transport term 1 increases when ℎ is confined within the
boundary layer, but it eventually drops as ℎ→∞. The key observation is that this trend causes
term 1 to be smaller than term L for ℎ = 1 and larger than term L for ℎ = 2, which means that the
non-homogeneous term L is dominant for large ℎ. A similar crossover happens for the Favre-
Reynolds-stress term 3 and the mean-flow dissipation term 4 for the larger Reynolds number case.
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Figure 5: Dependence of terms in (5.4) obtained by the two-fold repeated integration on the
upper integration bound ℎ for the turbulent boundary layers. (0) Term 1, (1) term 2, (2) term 3,
(3) term 4, (4) term 5, ( 5 ) term 6. The numerical data are from the direct numerical simulations
by Huang et al. (2022) atM∞ = 10.9. The vertical line indicates the wall-normal locations
where ℎ∗ = X∗

d99(ℎ = 1).
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Figure 6: (0) Comparison of the turbulent heat-transfer term 1 with the non-homogeneous term
L. (1) Comparison of the Favre-Reynolds stress term 3 with the mean-flow dissipation term 4.
The numerical data are from the direct numerical simulations by Huang et al. (2022) at
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d99(ℎ = 1). The
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It follows that the upper integration bound ℎ impacts qualitatively and quantitatively on the role
of the terms on the wall-heat transfer. The crucial issue is that, since ℎ is a mathematical quantity
used to derive the identity, we conclude that the dependence of the terms on ℎ is spurious.

Similar to the analysis by Ricco and Skote (2022) on the skin friction, the dependence of
the heat flux on the upper bound of integration can also be removed by taking the upper bound
ℎ to be asymptotically large. In this limit, the two-fold identity derived by Wenzel et al. (2022)
reduces to our identity (4.1), as follows. Terms 1 and 2 on the right-hand side of (5.4) are null
in the limit ℎ → ∞, because the integrals are finite as the components of the corresponding
integrands, 〈E′′) ′′〉 and m)̄/mH, are zero in the free stream. As ℎ→∞, term 3 in (5.4) simplifies
to term q̄CDA in (4.1) and term 4 in (5.4) simplifies to term q̄D in (4.1). In this limit, term 5 in
(5.5) simplifies to term q̄)

\
in (4.1) because the term involving m/mH in (5.2) is null due to the

integration along H and m/mG in the first term in (5.2) can be taken outside of the integral.

5.2 Simplification of the multifold Wenzel-Gibis-Kloker identity

From the energy equation, Wenzel et al. (2022) obtained a heat-transfer identity by carrying out
a number of successive integrations = between 0 and H performed before the final integration
between 0 and ℎ. In this section, we prove that the multifold identity reduces to the definition of
the wall-heat flux when the number of integration is asymptotically large. The Reynolds number
is again defined by using X∗

d99.
The infinite number of successive integrations between 0 and H performed on (2.8) before
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the final integration between 0 and ℎ leads to

q̄F =
='X%A

ℎ=

∫ ℎ

0
(ℎ − H)=−1d〈E′′) ′′〉dH︸                                        ︷︷                                        ︸

Term I

− =
ℎ=

∫ ℎ

0
(ℎ − H)=−1 ¯̀

m)̄

mH
dH︸                              ︷︷                              ︸

Term II

+ 'X%AM2
∞(W − 1)
ℎ=

∫ ℎ

0
(ℎ − H)= d̄〈D′′E′′〉 mD̄

mH
dH︸                                                        ︷︷                                                        ︸

Term III

−%AM
2
∞(W − 1)
ℎ=

∫ ℎ

0
(ℎ − H)= ¯̀

(
mD̄

mH

)2
dH︸                                                 ︷︷                                                 ︸

Term IV

+ 'X%A

ℎ=

∫ ℎ

0
(ℎ − H)=�GdH︸                           ︷︷                           ︸

Term V

. (5.6)

Figure 7 shows the heat flux terms I-V of (5.6) as a function of the integration number =.
The integration upper bound is chosen as ℎ = 1 (ℎ∗ = X∗

d99). All the terms approach zero as the
integration number = increases, except for term II, which is related to the mean-flow temperature.
We now study the limit = → ∞ of (5.6) for ℎ = 1. We adapt the method of Xu et al. (2023) for
the analysis of the skin-friction coefficient to the wall-heat flux case. By using the change of
variable b = − ln(1 − H), the wall-heat flux becomes

q̄F = ='X%A

∫ ∞

0
d〈E′′) ′′〉4−=bdb − =

∫ ∞

0
¯̀
m)̄

mH
4−=bdb

+ 'X%AM2
∞(W − 1)

∫ ∞

0
d̄〈D′′E′′〉 mD̄

mH
4−b 4−=bdb

− %AM2
∞(W − 1)

∫ ∞

0
¯̀
(
mD̄

mH

)2
4−b 4−=bdb + 'X%A

∫ ∞

0
�G4

−b 4−=bdb. (5.7)

We focus on the only term remaining in the limit =→∞, i.e. the second term on the right-hand
side of (5.7), i.e. the mean-flow term II in (5.6). In the limit b → 0+,

¯̀
m)̄

mH
∼ �0 + �1H + �2H

2 + O(H3) = �0 + �1

(
1 − 4−b

)
+ �2

(
1 − 4−b

)2
+ . . .

= �0 + �1b +
(
�2 −

�1
2

)
b2 + O(b3). (5.8)

The coefficient �= ('X) can be determined numerically. Using Watson’s lemma (Bender et al.,
1999) leads to

q̄F ∼ · · · − =
[
Γ(1)�0
=

+ Γ(2)�1

=2 +
(
�2 −

�1
2

)
Γ(3)
=3 + . . .

]
∼ −�0 ∼ − ¯̀F

m)̄

mH

����
H=0

, (5.9)

where Γ is the Gamma function. As = grows, the wall-heat flux approaches �0, that is, the
mean-flow temperature term II in (5.6) is found to be asymptotically equal to the wall-heat flux
when =→∞, ruling out the contributions of the turbulent heat flux, the Favre-Reynolds stresses,
the mean-flow dissipation and the non-homogeneous effects. As the identity collapses to the
definition of the wall-heat flux itself, no information is revealed about the heat-transfer physics,
proving that the dependence on = is spurious.
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Figure 7: Dependence of terms in (5.6) obtained by multi-fold repeated integration on the
integration number = for the turbulent boundary layers. (0) Term I, (1) term II, (2) term III, (3)
term IV, (4) term V. The numerical data are from the direct numerical simulations by Huang
et al. (2022) atM∞ = 10.9. The dashed lines indicate the corresponding local total heat flux.
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6 Conclusions

We have studied integral formulas for the decomposition of the wall-heat flux of high-Reynolds-
number compressible boundary layers. The theoretical approach used to derive the identities
of Elnahhas and Johnson (2022) and Xu et al. (2023) for the decomposition of the skin-friction
coefficient was utilized to obtain an integral identity for the wall-heat flux that isolates the
contributions of the laminar wall-heat flux and the turbulent heat transport. We discussed the
physical meaning of decomposition terms and the limitations of the identity, focusing on adiabatic
wall and wall-cooling cases.

A simplified integral identity for the decomposition of the wall-heat flux was obtained by
direct integration of the mean-temperature equation. This identity is the heat-transfer analogue
to the von Kármán momentum integral equation for the wall friction and it was used for the first
time to study compressible laminar and turbulent boundary layers. It can be used in experimental
studies on supersonic and hypersonic boundary layers to obtain the wall-heat flux. For boundary
layers atMach 2.5 with an adiabatic wall and atMach 10.9 with a cooled wall, the thermal balance
is dominated by the production of turbulent kinetic energy, ruled by the Favre-Reynolds stresses,
and by the mean-flow dissipation. The mean-flow streamwise inhomogeneity was instead found
to oppose the wall cooling. The absolute values of all the terms in the identity increase with the
Reynolds number.

We have also shown that, in the two-fold integration identities discovered by Wenzel et al.
(2022) and Xu et al. (2022), the upper integration bound used in those studies has a significant
impact on the terms of the identities. Being the bound a mathematical quantity, it follows that the
dependence of the identity on this bound is non-physical. This problem prevents the use of these
identities for the quantification of the effects of the Favre-Reynolds stresses and the turbulent heat
transport on the wall-heat flux. In the limit of a large integration bound, these identities simplify
to our direct-integration heat-transfer identity. The multifold integration identity proposed by
Wenzel et al. (2022) was also investigated. We have theoretically and numerically proved that,
as the number of integration becomes asymptotically large, this multifold identity degenerates
to the definition of the wall-heat flux, thus uncovering no information about the boundary-layer
physics and leading to the conclusion that the dependence of the multifold identity on the number
of integrations is spurious.

Acknowledgments

The authors wish to acknowledge the support of EPSRC (Grant No. EP/T01167X/1). PR has also
been supported by the US Air Force through the AFOSR grant FA8655-21-1-7005 (International
Program Office Dr Douglas Smith).

21



Appendices

A Derivation of integral identity (3.2)

The mathematical derivation of equation (3.2) is presented. It is first instructive to detail the
mathematical framework for the laminar boundary layer. The compressible Blasius boundary
layer without a streamwise pressure gradient possesses a similarity solution (Stewartson, 1964),

D = * = � ′([), E =
) ([2� ′ − �)√

2G'4
, ) = ) ([), (A.1)

where [2 = )−1
∫ [

0 ) ([̌)d[̌ and the similarity variable [ is

[ =

√
'4

2G

∫ H

0
d(G, Ȟ)dȞ. (A.2)

The prime denotes differentiation with respect to [. The compressible Blasius functions � ([)
and ) ([) are determined by the boundary-value problem

(`� ′′/)) ′ + �� ′′ = 0
(`) ′/)) ′ + %A�) ′ + `(W − 1)%AM2

∞(� ′′)2/) = 0,
� = � ′ = 0, ) = )F at [ = 0,
� ′ = 1, ) ′ = 0, as [→∞,

 (A.3)

where the Prandtl number %A = 0.71. The dynamic viscosity is described by Sutherland’s law
(Stewartson, 1964) in the numerical computations, although the theory is valid for any viscosity
law. The wall is isothermal as the wall temperature )F is constant.

The following mathematical steps are used in the derivation of equation (3.2).

• Heat conduction and laminar heat flux

1
'4%A

∫ ∞

0
(H −L ) m

mH

(
¯̀
m)̄

mH

)
dH =

1
'4%A

(
L `F

m)̄

mH

����
H=0
−

∫ ∞

0
¯̀
m)̄

mH
dH

)
=

1
'4%A

(
L `F

m)̄

mH

����
H=0
− (1 − `F)F ) +

∫ ∞

0

m ¯̀
mH
)̄dH

)
=

L

'4%A

(
−q̄F −

1
L
+ `F)F

L
+

∫ ∞

0

1
L

m ¯̀
mH
)̄dH

)
. (A.4)

The first term on the last line of (A.4) is used to obtain the wall-heat flux. The second
term in (A.4) is utilized to isolate the laminar contribution. The third and fourth terms in
(A.4) are included in the term related to the viscosity. We choose an appropriate L for
the wall-heat flux,

q̄F = q̄; = −
1
L

= −G(M∞, )F )√
'4G

= − `F
m)

mH

����
H=0

= − `F
B)F

d)
d[

����
[=0

. (A.5)
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The wall-heat flux of self-similar boundary layers is given by equation (6.77) of Anderson
(2000). The laminar contribution is isolated from the wall-heat flux (A.5) by choosing
L (G) as given in (3.6).

• Favre-Reynolds stresses

M2
∞(W − 1)

∫ ∞

0
(H −L ) d̄〈D′′E′′〉 mD̄

mH
dH = −LM2

∞(W − 1)
∫ ∞

0

(
1 − H

L

)
d̄〈D′′E′′〉 mD̄

mH
dH. (A.6)

• Turbulent heat-flux contribution

∫ ∞

0
(H −L ) md̄〈)

′′E′′〉
mH

dH = −L
∫ ∞

0

1
L
d̄〈) ′′E′′〉dH. (A.7)

• Mean-flow dissipation∫ ∞

0
(L − H) 1

'4
¯̀
(
mD̄

mH

)2
dH = L

∫ ∞

0

(
1 − H

L

) 1
'4

¯̀
(
mD̄

mH

)2
dH. (A.8)

• Streamwise convection ∫ ∞

0
(H −L ) m (〈)〉 − 1) d̄〈D〉

mG
dH

= −L ()F − 1)
(

d\)L
dG
−
\) − \)L

L

dL

dG

)
, (A.9)

where \) and \)L are given in (3.3) and (3.4), respectively.

• Wall-normal convection∫ ∞

0
(H −L ) m (〈)〉 − 1) d̄〈E〉

mH
dH = −L ()F − 1)

\)E

L
, (A.10)

where \)E is shown in (3.5).

The identity (3.2) is related to the identity (4.1). In the limit L →∞, terms q̄;, q̄ ¯̀ , q̄ℎ and
q̄\)E are null, while terms \)L reduces to the momentum thickness since H/L � 1. The term
q̄\) simplifies to d\) /dG because the second term of q̄\) is null. The enthalphy thickness can
be eliminated so that, for L →∞, equation (3.2) simplifies to (4.1).

In order to compare the wall-heat flux of laminar boundary layer with that of turbulent
boundary layer, a reference physical quantity should be fixed for both flows, as in the incom-
pressible case studied by EJ for the skin friction. This reference length can be the streamwise
location G, the thermal displacement thickness, the thermal momentum thickness or the thermal
boundary-layer thickness Xd99, i.e. the wall-normal distance where the streamwise mean density
reaches 99% of the free-stream density. We choose the thermal momentum thickness X∗

d99 as the
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reference scale for our analysis. It follows that we compare the wall-heat flux of a laminar flow
with that of a turbulent flow at the same thermal thickness. The thermal thickness is a better
choice than the streamwise location G because a fully developed turbulent boundary layer may
be induced artificially at different streamwise locations. The streamwise location G is obtained
by the relation

Xd99 =

√
2G
'X

∫ [99

0
)d[ = 1, (A.11)

where 'X is the Reynolds number defined by X∗
d99 and [99 is the wall-normal location where

d = 0.99. L (G) is finally computed by equation (3.6).
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