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We derive an integral formula for the skin-friction coefficient of compressible boundary

layers by extending the formula of Elnahhas & Johnson (2022) for incompressible boundary
layers. The skin-friction coefficient is decomposed into the sum of the contributions of the
laminar coefficient, the change of the dynamic viscosity with the temperature, the Favre-
Reynolds stresses and the mean flow. This decomposition is applied to numerical data for
laminar and turbulent boundary layers and the role of each term on the wall-shear stress is
quantified. We also show that the three-fold integration identity of Gomez 4C 0;. (2009)
and the two-fold integration identities of Wenzel 4C 0;. (2022) and Xu 4C 0;. (2022) for
turbulent boundary layers all simplify to the compressible von Kármán momentum integral
equation when the upper limit of integration is asymptotically large. The dependence of
these identities on the upper integration bound is studied. By using asymptotic methods,
we prove that the multiple-integration identity of Wenzel 4C 0;. (2022) degenerates to the
definition of the skin-friction coefficient when the number of integrations is asymptotically
large.

1 Introduction

The skin friction of turbulent boundary layers is usuallymuch larger than that of laminar boundary
layers. The high turbulent skin friction causes a large dissipation of kinetic energy into heat and
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thus a loss of performance in an immense range of aerodynamics applications in industry and
technology. The underlying physical mechanisms responsible for the large skin friction in
turbulent wall-bounded flows have therefore attracted the interest of engineers and scientists.

The skin friction of wall-bounded shear flows can be calculated directly by multiplying the
dynamic viscosity and the wall-normal gradient of the streamwise velocity at the wall. However,
the latter quantity is extremely difficult to measure and therefore researchers have devoted effort
to finding alternative approaches that can give further useful information about the physical
mechanisms. In one such effort, Fukagata et al. (2002) (FIK) obtained an integral identity that,
for incompressible channel and pipe flows, expresses the scaled wall-shear stress as the sum of the
laminar skin-friction coefficient and a weighted integral of the Reynolds stresses. An additional
integral term is present in the case of free-stream boundary layers because of their streamwise
inhomogeneity. In the latter flows, which are external and spatially-developing, the upper bound
of integration is not defined precisely and, as shown for example by Ricco and Skote (2022),
the contribution of the terms depends significantly on this upper bound. If the upper integration
bound is taken to be asymptotically large, Ricco and Skote (2022) proved that the FIK identity
reduces to the so-called von Kármán momentum integral equation (von Kármán, 1946), which
links the skin-friction coefficient to the streamwise change of the momentum thickness. The
Reynolds stresses thus disappear from the identity. Ricco and Skote (2022) concluded that the
impact of the Reynolds stresses on the wall-shear stress of turbulent boundary layers cannot be
quantified via the FIK identity because the dependence on the integration limit is spurious. They
also discussed how other variants of the original FIK identity for free-stream boundary layers
showed this dependence on the upper bound of integration.

An alternative identity was derived from the mean kinetic energy equation by Renard and
Deck (2016) (RD) for free-stream boundary layers. The upper integration bound is infinite in this
case and therefore the RD decomposition does not suffer from the issue related to the integration
bound pertaining to the FIK identity. The skin-friction coefficient can thus be successfully
decomposed and physically interpreted as the sum of the terms in the energy budget. Elnahhas
and Johnson (2022) (EJ) decomposed the skin-friction coefficient of incompressible boundary
layers in a sum of terms related to the laminar boundary layer, the Reynolds stresses and the
mean-flow inhomogeneity. They identified a quantity, function of the streamwise direction, as a
preferred position in the boundary layer around which the angular momentum exerted by the flow
can be computed. It is not straightforward to arrive at an identity for free-stream boundary layers
that uniquely quantifies the contribution of turbulence in a single term because the turbulent
fluctuations, besides inducing the Reynolds stresses, also modify the mean flow. An analogous
difficulty is encountered when the contribution of compressibility has to be quantified.

The study of wall friction exerted by compressible turbulent boundary layers is more com-
plicated than in the incompressible regime because of the intrinsic coupling of momentum and
energy transfer. Gomez et al. (2009) (GFS) extended the FIK identity to the cases of com-
pressible wall-bounded flows. They decomposed the skin-friction coefficient as the sum of four
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terms, two of which pertain to the flow compressibility. However, the effect of compressibility
was not distilled in a single term because of the change in mean density. The RD identity was
extended to the compressible cases by Fan et al. (2019). Wenzel et al. (2022) (WGK) and Xu
et al. (2022) (XWC) obtained alternative identities for compressible boundary layers by utilizing
a two-fold integration, instead of a three-fold integration as in the original FIK study. Com-
pared with the three-fold integration method, the two-fold integration method eliminates the
wall-distance-dependent term in the integral containing the Reynolds stresses.

Ricco and Skote (2022) performed multiple integrations on the incompressible streamwise
momentum equation to extend the original FIK identities. They showed that the resulting FIK-
like identities also simplify to the von Kármán momentum integral equation. The repeated
integration was performed by WGK in the compressible regime, where the upper bound of
integration exceeded the boundary-layer thickness because the influence of the thermal boundary
layer had to be considered. The impact of the upper bound of integration for compressible
FIK-like identities remains an open research point.

In this paper, we first extend the method of EJ to the study of the skin-friction coefficient
of compressible boundary layers. The Favre-averaged equation is used to derive the integral
equation. The decomposition identity is derived in §2 and the results of the decomposition
in the laminar and the turbulent cases are discussed in §3.1 and §3.2, respectively. We also
extend the work of Ricco and Skote (2022) to the compressible regime. In §4.1 and §4.2, we
prove that the three-fold GFS identity and the two-fold identities by WGK and XWC all possess
a spurious dependence on the upper integration bound and simplify to the compressible von
Kármán integral equation when the upper bound is infinitely large. In §4.3, the successive-
integration WGK identity is shown to collapse to the definition of the skin-friction coefficient
when the number of integration is infinitely large, thus showing how the dependence of the terms
on the number of integration is spurious. Concluding remarks are contained in §5.

2 Theoretical framework

Weconsider a compressible boundary layer over a flat platewhere G∗, H∗ and I∗ are the streamwise,
wall-normal and spanwise directions, respectively. The flat plate is at H∗ = 0 and the leading
edge of the plate is at G∗ = 0. The velocity components along G∗, H∗ and I∗ are D∗, E∗ and F∗,
respectively. The Navier-Stokes equations are scaled by using the free-stream velocity at G∗ = 0,
U∗∞, as the reference velocity and a length L∗ as the reference length scale. The temperature )∗,
the density d∗ and the dynamic viscosity `∗ are scaled by their respective free-stream values at
G∗ = 0, i.e. )∗∞, d∗∞ and `∗∞ . The time C∗ and the pressure ?∗ are scaled by L∗/U∗∞ and d∗∞U∗2∞ ,
respectively. The asterisk ∗ denotes dimensional quantities, while quantities without any symbol
are non-dimensional. The subscripts∞ and 4 indicate free-stream quantities at G∗ = 0 and at the
outer edge of the boundary layer, respectively. The Prandtl number %A and the ratio of specific
heats W are taken as constants. The free-stream potential flow is isentropic and the free-stream
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density and temperature are constant, i.e. )4 = d4 = 1.
Reynolds-averaging a quantity @ over I along a distance LI and over C for a time interval T

is defined as

@̄(G, H) = 1
TLI

∫ T

0

∫ LI

0
@(G, H, I, C)dIdC. (2.1)

Favre-averaging is also adopted to attain a simplified form for the convective terms of the
Navier-Stokes equations (Favre, 1965, 1992). A Favre-averaged quantity is defined as

〈@〉 = d@

d̄
. (2.2)

The flow is decomposed as

@(G, H, I, C) = @̄(G, H) + @′(G, H, I, C) = 〈@〉(G, H) + @′′(G, H, I, C). (2.3)

A Favre-averaged quantity satisfies d@′′ = 0 and d〈@〉@′′ = 0. Auxiliary relations include

d〈@〉 = d̄〈@〉 = d@, 〈@8@ 9〉 = 〈@8〉〈@ 9〉 + 〈@′′8 @′′9 〉. (2.4)

The relation between the Reynolds average and the Favre average is

〈@〉 − @̄ = @′ − @′′ = d′@′′

d̄
=
d′@′

d̄
. (2.5)

The Favre-averaged continuity and momentum equations for compressible, statistical two-
dimensional flows are (Adumitroaie et al., 1999)

md̄〈D 9〉
mG 9

= 0,

m d̄〈D8〉〈D 9〉
mG 9

+
md̄〈D′′

8
D′′
9
〉

mG 9
= − m ?̄

mG8
+
mf̄98

mG 9
,

 (2.6)

where f98 is the stress tensor

f98 =
2`
'4

(
(8 9 −

(::

3
X8 9

)
with (8 9 =

1
2

(
mD8

mG 9
+
mD 9

mG8

)
. (2.7)

The Einstein summation convention is adopted to any Latin suffix occurring twice in a single-term
expression. The Mach number and the Reynolds number are defined as

M∞ =
U∗∞√
W'∗)∗∞

, '4 =
d∗∞U∗∞L∗

`∗∞
, (2.8)

where '∗ = 287.05 J kg−1K−1 is the ideal gas constant.
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Wenowderive the relationship between the skin-friction coefficient and integral terms emerg-
ing from the G-momentum equation. The Favre-averaged G-momentum equation is rewritten as

md̄〈D〉〈D〉
mG

+ m

mH

(
d̄〈D〉〈E〉 + d̄〈D′′E′′〉 − ¯̀

'4

mD̄

mH

)
+ �G = 0. (2.9)

where

�G =
md̄〈D′′D′′〉

mG
− mf̄GG

mG
−

[
mf̄HG

mH
− 1
'4

m

mH

(
¯̀
mD̄

mH

)]
+ m ?̄
mG
. (2.10)

To help our derivation, the leading-order term−'4−1(m/mH) ( ¯̀mD̄/mH), contained in−mf̄HG/mH,
is isolated in (2.9) and subtracted in (2.10).

In the free stream, the inviscid momentum equation is

d4U4
dU4
dG

= −dP4
dG

, (2.11)

where P4 is the mean pressure. Subtracting (2.11) from (2.9) leads to the streamwise momentum
deficit equation,

m (〈D〉 − U4) d̄〈D〉
mG

+ m

mH

[
(〈D〉 − U4) d̄〈E〉 + d̄〈D′′E′′〉 −

¯̀
'4

mD̄

mH

]
+( d̄〈D〉 − d4U4)

mU4
mG
+ �G = 0, (2.12)

where

�G =
md̄〈D′′D′′〉

mG
− mf̄GG

mG
−

[
mf̄HG

mH
− 1
'4

m

mH

(
¯̀
mD̄

mH

)]
+ m ( ?̄ − P4)

mG
. (2.13)

In a high-Reynolds-number boundary layer, the first, second and last terms in (2.13) are neg-
ligible. The difference between the wall-normal viscous terms in (2.13) leads to the term
(m/mH)

(
`′mD′/mH

)
, which has been verified numerically to be very small in the boundary layer

and zero at the wall for an isothermal wall. The compressible von Kármán momentum integral
equation can be obtained by integrating (2.12) with respect to H from zero to infinity, as shown
in Appendix A.

The local skin-friction coefficient is defined as in (6.59) of Anderson (2000),

C 5
2
=

¯̀∗

d∗4U∗24
mD̄∗

mH∗

����
H∗=0

=
¯̀

d4U2
4'4

mD̄

mH

����
H∗=0

. (2.14)

As in the study of EJ, the skin-friction integral equation is obtained by multiplying (2.12) by
H − C and integrating the resulting equation along H from 0 to ∞, where C (G) is a length to be
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determined. Dividing the results by d4U2
4C leads to

C 5
2

=
1
'4C︸︷︷︸
C;

+ −1
'4CU4`4

∫ ∞

0

m ¯̀
mH
D̄dH︸                         ︷︷                         ︸

C ¯̀

+
∫ ∞

0

−d̄〈D′′E′′〉
d4U2

4C
dH︸                 ︷︷                 ︸

CCDA

+ d\C

dG
− \ − \C

C

dC

dG︸                  ︷︷                  ︸
C\

+ \E

C︸︷︷︸
C\E

+ XC + 2\C

U4
dU4
dG︸             ︷︷             ︸

C?

+  G︸︷︷︸
High−order terms

, (2.15)

where

'4C (G∗) =
d∗4U∗4C ∗(G∗)

`∗4
=
d4U4C
`4

'4,  G ≡
∫ ∞

0

(
1 − H

C

) �G

d4U2
4

dH, (2.16)

XC (G) ≡
∫ ∞

0

(
1 − H

C

) (
1 − d̄〈D〉

d4U4

)
dH, \C (G) ≡

∫ ∞

0

(
1 − H

C

) (
1 − 〈D〉U4

)
d̄〈D〉
d4U4

dH (2.17)

and

d\C

dG
=

∫ ∞

0

H

C 2
dC

dG

(
1 − 〈D〉U4

)
d̄〈D〉
d4U4

dH −
∫ ∞

0

(
1 − H

C

) m

mG

(
〈D〉
U4

)
d̄〈D〉
d4U4

dH

+
∫ ∞

0

(
1 − H

C

) (
1 − 〈D〉U4

)
m

mG

(
d̄〈D〉
d4U4

)
dH. (2.18)

As in the incompressible case by EJ, the key step is to choose the length scale C (G) in such a
way to render the first term on the right-hand-side of (2.15) equal to the skin-friction coefficient
of the laminar boundary layer. This procedure is detailed in the discussion following (2.19). In
(2.15), the term C ¯̀ indicates the contribution of the mean flow due to the variation of viscosity.
The term CCDA is caused by the Favre-Reynolds stresses. The term C\ is due to the spatial growth
of the momentum thickness and the length C . The terms C\E and C% result from the wall-normal
velocity and the streamwise pressure gradient, respectively. The last term on the right-hand-side
of (2.15),  G , contains all the high-order terms, which are negligible in the limit of high Reynolds
number.

We now discuss the derivation of each term of (2.15), following the integration of (2.12).

• Viscous stresses and laminar friction contribution

1
'4

∫ ∞

0
(H − C ) m

mH

(
¯̀
mD̄

mH

)
dH =

C

'4

(
¯̀
mD̄

mH

)����
H=0
− 1
'4

∫ ∞

0
¯̀
mD̄

mH
dH

= d4U2
4C
C 5
2
− `4U4

'4
+ 1
'4

∫ ∞

0

m ¯̀
mH
D̄dH.(2.19)
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The last term in (2.19) is induced by the variation of the dynamic viscosity due to the
temperature gradient. It is null in the incompressible regime since the dynamic viscosity
is constant.

For the special case of a laminar compressible boundary layer over a flat plate, the solution
is self-similar and the skin-friction coefficient is given in (6.76) of Anderson (2000),
namely,

C 5
2
=
F (M4, )F )√

'4G
, (2.20)

where '4G = d∗∞U∗∞G∗/`∗∞. We adopt an appropriate C such that

C 5
2
=

1
'4C

=
¯̀

d4U2
4'4

mD̄

mH

����
H=0

=
`Fd2�/d[2 |[=0

d4U2
4'4 B)F

with B =

√
2G
'4
, (2.21)

where � ([) is the self-similar variable related to the laminar-flow velocity components, [
is the scaled wall-normal coordinate and the subscript F denotes quantities at the wall, as
detailed in Appendix B. In (2.21), the definition of [, given in Appendix B, has been used.
For boundary layers with no pressure gradient, U4 = 1. The laminar contribution can be
isolated from the skin-friction coefficient (2.15) by choosing

C (G) = B)F

`Fd2�/d[2 |[=0
. (2.22)

For an incompressible boundary layer, equation (2.22) reduces to

C =
B

d2�/d[2 |[=0
= 3.01

√
G

'4
, (2.23)

as given in EJ.

• Favre-Reynolds stresses

∫ ∞

0
(H − C ) md̄〈D

′′E′′〉
mH

dH = −
∫ ∞

0
d̄〈D′′E′′〉dH. (2.24)

• Streamwise momentum flux

∫ ∞

0
(H − C ) m (〈D〉 − U4) d̄〈D〉

mG
dH = d4U2

4C

(
d\C

dG
− \ − \C

C

dC

dG
+ 2\C

U4
dU4
dG

)
, (2.25)

where

\C (G) ≡
∫ ∞

0

(
1 − H

C

) (
1 − 〈D〉U4

)
d̄〈D〉
d4U4

dH, \ (G) ≡
∫ ∞

0

(
1 − 〈D〉U4

)
d̄〈D〉
d4U4

dH. (2.26)
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• Wall-normal momentum flux

∫ ∞

0
(H − C ) m (〈D〉 − U4) d̄〈E〉

mH
dH = d4U2

4 \E with \E ≡
∫ ∞

0

(
1 − 〈D〉U4

)
d̄〈E〉
d4U4

dH. (2.27)

• Pressure gradient contribution

∫ ∞

0
(H − C ) ( d̄〈D〉 − d4U4)

dU4
dG

dH = d4U4C
dU4
dG

XC . (2.28)

The identity (2.15) is related to the compressible von Kármán momentum integral equation.
In the limit L → ∞ (and hence '4L → ∞), the first three terms on the right of (2.15) and
the term C\E are null. In this limit, the terms \L and XL simplify to the momentum thickness
\ and the displacement thickness X, defined in Appendix A, since H/L � 1, and the term �\

simplifies to d\/dG because the second term of �\ is null. By neglecting the high-order terms
in the limit of large Reynolds number, the identity (2.15) thus simplifies to the compressible
von Kármán momentum integral equation, given in (A.2), analogous to the incompressible case
studied by EJ.

3 Numerical results

3.1 Skin-friction coefficient of laminar boundary layers

We first present the numerical results of the decomposition of the skin-friction coefficient for
compressible self-similar laminar boundary layers without a streamwise pressure gradient. The
free-stream Mach number is related to the Reynolds number as follows

'4 =
M∞d∗∞L∗√
W'∗)∗∞`

∗
∞()∗∞)

. (3.1)

In experiments, the Mach number can be fixed by changing the Reynolds number through an
adjustment of the total pressure (Huang et al., 2021). The governing equations for a laminar
boundary layer are discussed in Appendix B. The decomposed terms for the laminar flow are
simplified to (B.4) in Appendix B. The dependence of the scaled wall-shear stress d2�/d[2 |[=0
on the Mach number is shown in figures 1(a) and 1(b) for an isothermal wall ()F = 1) and an
adiabatic wall (m)/mH |H=0 = 0), respectively. The Reynolds number is '4 =1124, a typical value
in turbomachinery experiments (Marensi et al., 2017). We choose a maximum Mach number
equal to 6 in order to study the Mach-number effect.

Equation (2.21) indicates that the following parameter can be utilized to describe the skin-
friction coefficient of laminar boundary layers, namely,

C 5 ,' = B'4C 5 =
√

2G'4C 5 . (3.2)
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This parameter is a better choice for the investigation of the skin friction of laminar boundary
layers since it excludes the effect of the Reynolds number and the streamwise coordinate from
the skin-friction coefficient. Figure 1(c) and 1(d) display the decomposition of the skin-friction
coefficient C 5 ,' for compressible laminar flows at different Mach numbers. The laminar skin-
friction coefficient C 5 ,' is not strongly influenced by the change in Mach number, while instead
d2�/d[2 |[=0 changes significantly with the Mach number in the adiabatic-wall case. This result
is explained by (2.21) because )F/`F appears as a divisor to balance C 5 ,' . All the decomposed
terms are smaller than C 5 ,' for the isothermal-wall case. For the adiabatic-wall case, however,
B'4C\E and B'4C ¯̀ grow rapidly with the Mach number and ultimately overcome C 5 ,' at large
Mach number. It is apparent that the decrease of B'4C\ counteracts the growth of B'4C\E and
B'4C ¯̀ . The hollow circles are the post-processing data of the incompressible results of EJ, where
B'4C ¯̀ is zero in the incompressible case because the density is constant. The other decomposed
terms match our results well.

Figures 1(4) and 1( 5 ) show the downstream development of the decomposed terms. The
effects of the Reynolds number and the streamwise coordinate are scaled out, so that the terms
are constant along the streamwise direction. The contribution of B'4C ¯̀ grows gradually with
the Mach number and is equal to the sum of −'4C\ and −B'4C\E .

3.2 Skin-friction coefficient of turbulent boundary layers

The decomposition of the skin-friction coefficient of fully-developed turbulent boundary layers
is now discussed. The analyzed data are from the direct numerical simulation dataset of Zhang
et al. (2018) and Huang et al. (2022). The free-stream velocity is U∗∞ =823.6 m/s and the
free-stream density is d∗∞ = 0.1 kg/m3. The free-stream Mach number is M∞ = 2.5. The
inflow and wall temperatures are )∗∞ = 270 K and )∗F = 568 K, respectively. There is no
streamwise pressure gradient and the wall temperature is approximately equal to the adiabatic
wall recovery temperature. The dependence of the dynamic viscosity on the temperature is
modeled by Sutherland’s law.

In order to compare the results from a turbulent boundary layer with those from a laminar
boundary layer, we need to fix a reference physical quantity for both flows, as in the incompressible
case studied by EJ. This quantity can be the streamwise location G, the displacement thickness
X, the momentum thickness \ or the boundary-layer thickness X99, i.e. the wall-normal distance
where the streamwisemean velocity is 99% of the free-stream velocity. Themomentum thickness
of the laminar boundary layer is

\ = B

∫ ∞

0
(1 − � ′) � ′d[ = 0.436B. (3.3)

We choose the momentum thickness \ as the reference scale for our analysis. It means that we
compare the skin friction of a laminar flow with that of a turbulent flow at the same momentum
thickness. This choice is preferred to fixing the streamwise location G since a fully developed

9



(0) Isothermal walls

0 1 2 3 4 5 6
0.43

0.44

0.45

0.46

0.47

0.48

F ′′
w = 0.470

M∞

F
′′ w

(1) Adiabatic walls

0 1 2 3 4 5 6
0.45

0.5

0.55

0.6

0.65

F ′′
w = 0.470

M∞

F
′′ w

(2)

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

M∞

(3)

0 1 2 3 4 5 6
−2

−1.5

−1

−0.5

0

0.5

1

M∞

Cf,R
sReCµ̄
sReCθv
sReCθ

(4)

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

1.2

x

C
f

M∞ = 0.69

M∞ = 0.69

M∞ = 3.0

M∞ = 3.0

M∞ = 6.0

M∞ = 6.0

( 5 )

0 40 80 120 160 200
0

0.2

0.4

0.6

0.8

1

1.2

x

C
f

Figure 1: Quantities related to the study of the compressible laminar boundary layer. (0, 1)
Dependence of � ′′F = d2�/d[2 |[=0 on the Mach number. (2, 3) Decomposition of skin-friction
coefficient C 5 ,' at different Mach numbers. The hollow circles are the scaled incompressible
results of EJ. (4, 5 ) Downstream development of the decomposed terms. The lines indicate
the contribution of B'4C ¯̀ and the symbols denote the summation of −B'4C\ and −B'4C\E .
%A = 0.707 and W = 1.4. 10
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Figure 2: Decomposition of the skin-friction coefficient C 5 /2 into the terms in (2.15) for a
turbulent boundary layer. C 5 : Total skin friction; C; : Laminar contribution; C ¯̀ : Contribution
of viscosity change; CCDA : Favre-Reynolds stresses term; C\ :Boundary-layer growth term; C\E :
Wall-normal velocity term. The numerical data are from the direct numerical simulations by
Zhang et al. (2018) and Huang et al. (2022) atM∞ = 2.5. The Reynolds numbers are '\ = 2835
(blue), '\ = 4982 (red) and '\ =8093 (yellow).

turbulent boundary layer may be induced artificially at different streamwise locations. Other
choices, such as X and X99, are possible, but they are not discussed here for brevity.

Figure 2 shows the magnitudes of the terms in identity (2.15) at three different momentum-
thickness Reynolds numbers '\ = d∗∞U∗∞\∗/`∗∞. The term involving the Favre-Reynolds
stresses, CCDA , dominates the balance, contributing the most to the wall-shear stress, especially
at the lowest Reynolds number which corresponds to the location closest to the leading edge.
The term due to the mean-flow streamwise inhomogeneity, C\ , is the second largest contributor
to the balance. Its effect is opposite to that of the Favre-Reynolds stresses: the growth of the
boundary layer opposes the enhancement of the wall-shear stress by the Favre-Reynolds stresses
by about 40%. The term related to the wall-normal momentum flux, �\E , contributes next to
the wall-shear stress, i.e. about 25% of the skin-friction coefficient. The impact of the change
of viscosity due to the temperature, synthesized by the term C ¯̀ , and the laminar term �; are
negligible compared to the other terms. The amplitude of all the terms in identity decreases with
the Reynolds number.

We note that the identity does not depend on the upper bound of integration because the
integration is unbounded along the wall-normal direction. The upper bound instead plays a
key role in the various versions of the FIK identity, as verified by Ricco and Skote (2022)
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in the incompressible case and discussed in §4 in the compressible case. Moreover, different
from the FIK and the RD identities, the laminar contribution to the skin-friction coefficient is
distinguished, that is, the skin-friction coefficient reduces to the laminar value when the Favre-
Reynolds term vanishes. A further difference is that the RD identity highlights the impact of
the terms in the turbulent kinetic equation, while the present identity reveals the influence of
the terms in the streamwise momentum equation. Our method could be extended to study the
heat-transfer coefficient, similar to the two-fold integration method of WGK.

4 Simplification of alternative Fukagata-Iwamoto-Kasagi identities

Wenzel et al. (2022) and Barone et al. (2022) showed that FIK-like identities quantitatively
depend on the upper bound of integration for compressible boundary layers. This dependence
was studied in further detail by Ricco and Skote (2022) for incompressible boundary layers. We
herein study the identities discovered by Gomez et al. (2009), Wenzel et al. (2022), and Xu et al.
(2022) without a streamwise pressure gradient to evince whether the upper integration bound
and the number of successive integration impact on the relative contribution of the terms in
the identities. We utilize asymptotic methods and the same direct numerical simulation data
employed in §3.2.

4.1 Simplification of the three-fold Gomez-Flutet-Sagaut identity

We prove that the identity derived by Gomez et al. (2009) reduces to the compressible von
Kármán momentum integral equation when the upper bound of integration is asymptotically
large. We choose the local boundary thickness X∗99 as the reference length for this analysis. The
Reynolds number is thus 'X = d∗∞X∗99U

∗
∞/`∗∞.

Integrating the Favre-averaged G-momentum equation from 0 to H leads to

d̄〈D′′E′′〉 − ¯̀
'X

mD̄

mH
+ ¯̀
'X

mD̄

mH

����
H=0
+

∫ H

0
!GdH = 0, (4.1)

where

!G =
md̄〈D〉〈D〉

mG
+ md̄〈D

′′D′′〉
mG

+ md̄〈D〉〈E〉
mH

− mf̄GG
mG
−

[
mf̄HG

mH
− 1
'X

m

mH

(
¯̀
mD̄

mH

)]
+ m ?̄
mG
. (4.2)

For a turbulent boundary layer at high Reynolds number, equation (4.2) reduces to

!G =
md̄〈D〉〈D〉

mG
+ md̄〈D〉〈E〉

mH
+ m ?̄
mG
. (4.3)

By further integrating (4.1) from 0 to H, we obtain

H ¯̀
'X

mD̄

mH

����
H=0

= −
∫ H

0
d̄〈D′′E′′〉dH + 1

'X

∫ H

0
¯̀
mD̄

mH
dH −

∫ H

0

∫ H̃

0
!GdĤdH̃. (4.4)
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Integrating (4.4) from 0 to a wall-normal location ℎ in the free stream, i.e. where dD = 1 and
dE = 0, leads to

ℎ2 ¯̀
2'X

mD̄

mH

����
H=0

= −
∫ ℎ

0

∫ H

0
d̄〈D′′E′′〉dĤdH + 1

'X

∫ ℎ

0

∫ H

0
¯̀
mD̄

mĤ
dĤdH

−
∫ ℎ

0

∫ H

0

∫ H̃

0
!GdĤdH̃dH. (4.5)

According to Cauchy’s formula for repeated integrations, given in (3.3) ofWGK, the skin-friction
coefficient can be expressed as

C 5
2
= − 2

ℎ2

∫ ℎ

0
(ℎ − H) d̄〈D′′E′′〉dH︸                               ︷︷                               ︸

Term 1

+ 2
'Xℎ

2

∫ ℎ

0

∫ H

0
¯̀
mD̄

mĤ
dĤdH︸                           ︷︷                           ︸

Term 2

− 1
ℎ2

∫ ℎ

0
(ℎ − H)2!GdH︸                        ︷︷                        ︸

Term L3

, (4.6)

where L3 is used to indicate a three-fold integration. If the upper bound ℎ is set equal to 1, that
is, ℎ∗ = X∗99, equation (4.6) becomes

C 5 =
4
'X

∫ 1

0

∫ H

0
(˜̀+ 1) mD̄

mĤ
dĤdH − 4

∫ 1

0
(1 − H) d̄〈D′′E′′〉dH − 2

∫ 1

0
(H − 1)2!GdH

=
4(1 − X3)

'X
− 4

∫ 1

0
(1 − H) d̄〈D′′E′′〉dH + 4

'X

∫ 1

0
(1 − H) ˜̀mD̄

mH
dH

− 2
∫ 1

0
(H − 1)2!GdH, (4.7)

where ˜̀= ¯̀−1 and X3 =
∫ 1

0 (1− D̄)dH. Equation (4.7) agrees with (B1) of GFS if the high-order
terms in (B1) are neglected when the boundary-layer theory approximation is adopted (White,
2006). Analogous to the original FIK identity in the incompressible case, the first term on the
right-hand side of (4.7) does not correspond to the contribution of a laminar boundary layer. The
laminar contribution to the skin-friction coefficient is instead isolated by term C; in our identity
(2.15).

As in the incompressible case of Ricco and Skote (2022), the integration bound ℎ in (4.6)
can be taken asymptotically large to remove the dependence of the right-hand side of (4.6) on ℎ.
The first and second terms on the right side of (4.6) are null in the limit ℎ → ∞ as the integrals
are finite since the corresponding integrands d̄〈D′′E′′〉 and ¯̀mD̄/mH are null in the free stream. It
follows that

C 5 = lim
ℎ→∞


− 2
ℎ2

∫ ℎ

0
H2!GdH︸                ︷︷                ︸

Term 3

+ 4
ℎ

∫ ℎ

0
H!GdH︸           ︷︷           ︸

Term 4

−2
∫ ℎ

0
!GdH︸          ︷︷          ︸

Term 5


, (4.8)
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Figure 3: (0 − 4) Dependence of terms in (4.6) and (4.8) obtained by the three-fold integration
on the upper integration bound ℎ for turbulent boundary layers. ( 5 ) Comparison of term 1 (solid
lines) with term L3 (dashed lines). The numerical data are from the direct numerical simulations
by Zhang et al. (2018) and Huang et al. (2022) at M∞ = 2.5. The vertical line indicates the
wall-normal locations where ℎ = X99.
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where the sum of terms 3, 4 and 5 equals term L3 in (4.6). Only term 5 in (4.8) is finite as
ℎ → ∞, while terms 3 and 4 are null in this limit, analogous to the incompressible case (Ricco
and Skote, 2022). Two cases, at 'X = 37637 and 'X = 61429, are studied. These Reynolds
numbers correspond to '4g = 510 and '4g = 774, where '4g is the Reynolds number based
on the wall-friction velocity, the boundary-layer thickness X∗99, and the viscosity at the wall. The
lower Reynolds number case is from Zhang et al. (2018) and the higher Reynolds number case
is from Huang et al. (2022). Figure 3 displays the dependence of terms 1-5 in (4.6) and (4.8)
for these two cases on the upper bound ℎ. All the terms vary strongly with ℎ. As ℎ grows
asymptotically, terms 1-4 vanish, while term 5 plateaus to a constant.

In the limit ℎ→∞, equation (4.8) reduces to (A.1),

C 5
2

= −
∫ ∞

0

(
md̄〈D〉〈D〉

mG
+ md̄〈D〉〈E〉

mH
+ m ?̄
mG

)
dH

=

∫ ∞

0

[
(d4U4 − d̄〈D〉)

dU4
dG
+ m (U4 − 〈D〉) d̄〈D〉

mG

]
dH. (4.9)

To obtain (4.9), we have utilized (2.11) and neglected the pressure-fluctuation term −m?′/mG =
m

(
d〈E′′2〉

)
/mG emerging from the H-momentum equation because it is small in a high-Reynolds-

number turbulent boundary layer (Bradshaw, 1964). We have also used
∫ ∞

0 m ( d̄〈D〉) /mG dH = 0,
which follows from the continuity equation. Equation (4.9) therefore simplifies to (A.2), which
indicates that, in the case of a compressible boundary layer, the GFS identity reduces to the
compressible von Kármán momentum integral equation.

In the original FIK identity for incompressible boundary layers, X∗99 was the upper bound of
choice. However, in the compressible FIK identities, such as those proposed byWGK and XWC,
the upper bound has been chosen to be larger than X∗99 because of the need to select a domain
that covers the thermal boundary layer as well, especially in the case of hypersonic boundary
layers. This issue does not concern the analysis of incompressible boundary layers because no
thermal effects incur in that case. In view of this idea, attention should be paid to figure 3( 5 ),
where the turbulent term 1 is compared with the spatial-growth term L3, defined in (4.6). Figure
3( 5 ) and the analogous figure 4( 5 ) were not shown in the incompressible analysis by Ricco and
Skote (2022). The turbulent term 1 shows a rapid decrease near X99, while the spatial-growth
term L3 grows significantly there. These terms match at ℎ ≈ 2X99 and the spatial-growth term L3
dominates for ℎ>2X99. The balance is therefore dominated by the turbulent term if ℎ chosen to
be comparable with X99 and by the spatial-growth term if ℎ is taken to be larger than 2X99. This
crossover occurring as the upper bound increases therefore leads to totally different qualitative
and quantitative conclusions about the impact of the different terms of the streamwise momentum
equation on the wall friction.

As shown in figures 3(a) and 3(b), since the contributions of the Favre-Reynolds stresses and
¯̀mD̄/mH to the skin-friction coefficient vanish in the limit ℎ→∞, it is thus not possible to quantify
the impact of these different terms on the wall friction. This problem arises because the geometry
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of the system does not possess a precise scale along the wall-normal direction, differently from
channel and pipe flows, for which the channel height and the pipe radius are instead used as
upper integration bounds. It follows that the skin-friction coefficient depends spuriously on ℎ
because ℎ is a mathematical quantity used to derive the identity. We also conclude that the GFS
identity does not allow for the quantification of the contribution of the Favre-Reynolds stresses
to the skin-friction coefficient.

4.2 Simplification of the two-fold Wenzel-Gibis-Kloker identity

The FIK and GFS identities are based on a three-fold integration of the streamwise momentum
equation. For compressible turbulent boundary layers, WGK and XWC instead decomposed the
skin-friction coefficient by a two-fold integration. The two-fold integration of the streamwise
momentum equation leads to the identity

C 5 = −
2
ℎ

∫ ℎ

0
d̄〈D′′E′′〉dH︸                   ︷︷                   ︸

Term I

+ 2
ℎ'X

∫ ℎ

0
¯̀
mD̄

mH
dH︸                ︷︷                ︸

Term II

+ 2
∫ ℎ

0
(H − ℎ)!GdH︸                  ︷︷                  ︸
Term L2

, (4.10)

where the last term can be written as

L2 = 2
∫ ℎ

0
(H − ℎ)!GdH =

2
ℎ

∫ ℎ

0
H!GdH︸           ︷︷           ︸

Term III

−2
∫ ℎ

0
!GdH︸          ︷︷          ︸

Term IV

. (4.11)

The terms on the right-hand side of (4.10) depend on the integration bound ℎ, as in the GFS
identity. In the limit ℎ → ∞, terms I and II in (4.10) are null because the integrals are finite as
the Favre-Reynolds stresses and ¯̀mD̄/mH are null in the free stream. The integrand H!G in term
III of (4.11) is zero outside of the boundary layer and hence its integral is finite as well. It follows
that term III approaches zero when ℎ → ∞. Term IV instead contributes to the skin-friction
coefficient by itself in the limit ℎ → ∞. Term IV coincides with term 5 in (4.8), which arises
from the three-fold integration, and, similar to the three-fold GFS identity, the two-fold identity
obtained by WGK also reduces to the compressible von Kármán momentum integral equation
when ℎ→∞.

Figure 4 unveils the contributions of terms I-IV in (4.10) and (4.11) on the upper integration
bound ℎ. Terms I-III exhibit an intense dependence on ℎ and tend to 0 as ℎ→∞. The Favre-
Reynolds stresses (term I) are excluded from the contribution of the skin-friction coefficient if
an asymptotically large upper bound is chosen. Term IV instead grows to a constant as ℎ→∞.
The decay of term I and the rapid growth of term IV are evident near ℎ = 1, i.e. at the edge of
the boundary layer, which indicates that the two-fold identity is sensitive to the upper bound at
around ℎ = 1. As for the three-fold identity, the terms of the identity depend spuriously on the
upper bound. The turbulent term I is compared to the spatial-development term L2 in figure 4(4).
The turbulent term I is smaller than term L2 for ℎ < 0.8X99, but the spatial-development term
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Figure 4: (0 − 3) Dependence of terms I-IV (4.10-4.11) obtained by the two-fold integration
on the upper integration bound ℎ for turbulent boundary layers at two Reynolds numbers. (4)
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the wall-normal location where ℎ = X99. The parameters are the same as the direct numerical
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L2 dominates for ℎ > 0.8X99. It should be noted that the value of ℎ where the turbulent term I
equals term L2 changes for different cases. It can be larger than X99, as in the case of the three-
fold-integration GFS identity shown in figure 3( 5 ). The conclusion is that a slight modification
of the upper bound can drastically change the dominant term in the two-fold integration identity.
This significant change does not happen for the identity (2.15) as it does not depend on the upper
bound.

Thanks to these results, we are now in the position to analyze the results of WGK and XWC.
To include all the dynamical effects of a compressible boundary layer, WGK and XWC set the
upper integration bound to 1.3X∗99 and 1.5X∗99, respectively. The boundary-layer dynamics, and
therefore its kinematic thickness and its thermal thickness, is related to the Mach number and
the wall temperature, and hence, to apply this theoretical framework, the upper integration limit
should change in each case in order to include all the dynamical and thermal features of the
boundary layer. WGK showed that the decomposed terms are sensitive to the upper integration
bound, as revealed by their figure 12.

Terms I-IV in (4.10) and (4.11) are related to the terms in the identities by WGK and
XWC. Term I in (4.10) is the turbulent-convection term 2)

5
in (3.7) of WGK. Term II is the

boundary-layer term 2!
5
of WGK. The last term in (4.10) can be interpreted as the sum of the

mean-convection term 2"
5

and the spatial-development term 2�
5
(m ?̄/mG = 0 for their case).

Equation (3.7) in WGK is the same as our (4.6), if one combines 2"
5

and 2�
5
to our third term

in the right of our (4.6) and takes m ?̄/mG = 0. The dependence of the decomposed terms on the
upper bound can be misleading. WGK showed that the dominant term is the turbulent-convection
term 2)

5
(our term I) when the upper bound is ℎ∗ = 1.3X∗99, whereas the spatial-development 2�

5

(part of our term L2) becomes dominant when the upper bound is chosen to be ℎ∗ = 2X∗99 (refer
to their figure 12).

The terms in equation (3.4) of XWC include high-order terms. The term ��
5
of XWC is

our term II as we neglect high-order terms. Their term �)
5
is our term I. The combination of

�
�,1
5
, �

�,2
5

and ��,3
5

is L2, the last term of our (4.10). The numerical results of XWC showed
that the spatial-development term is dominant. XWC reported the spatial-development term to
be dominant and concluded that the overshoot of the skin-friction coefficient is mainly caused
by the streamwise dependence of the mean-flow profiles and not by the Reynolds stresses. This
conclusion can be questioned because one can specify a smaller upper bound of integration to
mitigate the contribution of the spatial-development term. The contribution of the terms to the
dynamical balance and to the wall-shear stress should not depend on the upper integration bound
because ℎ is arbitrary.

We also note that the identity (2.15) simplifies to the two-fold identity (4.10) by neglecting the
streamwise pressure gradient and setting L and the upper integration bounds of both equations
equal to 1.
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4.3 Simplification of the multifold Wenzel-Gibis-Kloker identity

The identity emerging from a number of successive integrations = between 0 and H performed
before the final integration between 0 and ℎ was studied by Ricco and Skote (2022) for an
incompressible channel flow and by WGK for a compressible turbulent boundary layer. Ricco
and Skote (2022) studied the asymptotic behavior of the repeated-integration identity as =→∞
and proved that the integral involving the Reynolds stresses impacts less and less on the skin-
friction coefficient as = increases because that term behaves ∼ 48�DE3/=3, where �DE3 is a
constant. A key conclusion was that the channel-flow identity only possesses a defined physical
meaning in the original FIK case. We now utilize the asymptotic method of Ricco and Skote
(2022) to study the multifold WGK identity as ℎ → ∞ and =→ ∞ and investigate the behavior
of the different terms in these limits.

As shown byWGK, a number = of successive integrations between 0 and H can be performed
on (4.1) before the final integration between 0 and ℎ, to obtain

C 5 = −2=
ℎ=

∫ ℎ

0
(ℎ − H)=−1 d̄〈D′′E′′〉dH︸                                   ︷︷                                   ︸

Term A

+ 2=
ℎ='X

∫ ℎ

0
(ℎ − H)=−1 ¯̀

mD̄

mH
dH︸                                ︷︷                                ︸

Term B

− 2
ℎ=

∫ ℎ

0
(ℎ − H)=!GdH.︸                         ︷︷                         ︸
Term C

(4.12)

In the limit ℎ → ∞, the first term and the second term on the right-hand side of (4.12) become
negligible because the integral always grows more slowly than the denominator ℎ=. The third
term is dominant and can be expanded by using the binomial theorem,

− 2
ℎ=

∫ ℎ

0
(ℎ − H)=!GdH = −2

=∑
:=0

(
=

:

)
(−1):
ℎ:

∫ ℎ

0
H:!GdH. (4.13)

When ℎ → ∞, the terms on the right-hand of (4.13) for : ≠ 0 become negligible because the
integrals are finite. The term for : = 0 is finite since it is independent of ℎ. We adopt the
boundary-layer assumption and hence the non-homogenous term (4.2) reduces to (4.3). In the
limit ℎ→∞, the skin-friction coefficient is

C 5
2
= −

∫ ∞

0
!GdH = −

∫ ∞

0

md̄〈D〉〈D〉
mG

dH =
d
dG

∫ ∞

0
(1 − d̄〈D〉〈D〉) dH = d\

dG
, (4.14)

which is equal to (A.2) if one takes U4 = 1. It follows that the WGK multifold identity (4.12)
reduces to the compressible von Kármán momentum integral equation.

We now study the case for ℎ = 1, which corresponds to ℎ∗ = X∗99, and the limit = → ∞. By
using the change of variable B = − ln(1 − H), the skin-friction coefficient becomes

C 5 = −2=
∫ ∞

0
d̄〈D′′E′′〉4−=BdB + 2=

'X

∫ ∞

0
¯̀
mD̄

mH
4−=BdB − 2

∫ ∞

0
!G4

−B4−=BdB. (4.15)
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We expand the Favre-Reynolds stresses, the mean shear-stress term and the convection term !G

in (4.15) for B→ 0+,

d̄〈D′′E′′〉 ∼ �3H
3 + �4H

4 + O(H5) = �3(1 − 4−B)3 + �4(1 − 4−B)4 + . . .
= B3 [�3 + (�4 − 3�3) B] + O(B5), (4.16)

¯̀
mD̄

mH
∼ �0 + �1H + �2H

2 + O(H3) = �0 + �1(1 − 4−B) + �2(1 − 4−B)2 + . . .

= �0 + �1B +
(
�2 −

�1
2

)
B2 + O(B3), (4.17)

!G4
−B ∼

(
d̄〈D〉 m〈D〉

mG
+ d̄〈E〉 m〈D〉

mH

)
4−B =

[
�2H

2 + �3H
3 + O(H4)

]
4−B

=
[
�2(1 − 4−B)2 + �3(1 − 4−B)3 + . . .

]
4−B

= �2B
2 + (�3 − 2�2) B3 + O(B4), (4.18)

where

〈D〉 = 01H + 02H
2 + O(H3), 〈E〉 = 12H

2 + 13H
3 + O(H4), (4.19)

〈d〉 = 20 + 21H + O(H2), d̄〈D〉 m〈D〉
mG

= O(H2), d̄〈E〉 m〈D〉
mH

= O(H2). (4.20)

The coefficients �= ('X), �= ('X) and �= ('X) can be determined numerically. For 'X = 37637,

�3 = −299.36, �4 = 3563.35, �0 = 42.99, �1 = −44.80,
�0 = −1.01, �1 = −1.56,

while for 'X = 61429

�3 = −1251.03, �4 = 39668.72, �0 = 60.27, �1 = −66.51,
�0 = −2.20, �1 = 154.50.

Using Watson’s lemma (Bender and Orszag, 1999) leads to

C 5 ∼ −2=
[
Γ(4)�3

=4 +
(
�4 −

3�3
2

)
Γ(5)
=5 + . . .

]
− 2

[
Γ(3)�2

=3 + (�4 − 2�3)
Γ(4)
=4 + . . .

]
+ 2=

'X

[
Γ(1)�0
=

+ Γ(2)�1

=2 +
(
�2 −

�1
2

)
Γ(3)
=3 + . . .

]
∼ 2 ¯̀
'X

mD̄

mH

����
H=0

, (4.21)

where Γ is the Gamma function. As = grows, the skin-friction coefficient approaches �0/'X ,
ruling out the contribution of the Favre-Reynolds stresses at leading order. It also follows that
the identity collapses to the definition of the skin-friction coefficient itself, therefore revealing
no information about the dynamics of the flow and proving that the dependence on = is spurious.

Figure 5 shows the dependence of the terms composing the WGK multifold identity on the
integration number =. The Favre-Reynolds stress term A first increases, reaches a peak value
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Figure 5: Dependence of terms A (graph 0), B (graph 1) and C (graph 2) in (4.12) on the number
of iterations = for turbulent boundary layers at two Reynolds numbers. The solid and dashed
lines correspond to the numerical and asymptotic solutions, respectively. The parameters are the
same as the direct numerical simulation data of Zhang et al. (2018) and Huang et al. (2022). The
Mach number isM∞ = 2.5.
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at = = 15 and then decreases slowly. The non-homogeneous term C rapidly decays to zero as
= increases. The mean-flow term B is dominant for large =, rather than the non-homogeneous
term for the two-fold or the three-fold decomposition when the large-ℎ limit is taken. The
present results explain the cases studied in figure 11 of WGK. The maximum value of = in WGK
is 10, for which the contribution of the Favre-Reynolds stresses is significant, as displayed in
figure 5. If WGK had chosen a larger value of =, the Favre-Reynolds stress term would have
been less impactful on the skin-friction coefficient. It is clear that the Favre-Reynolds stress
term is sensitive to the integration number =, a further indication that the influence of = on the
contribution of the different terms on the wall friction is spurious.

5 Conclusions

In this paper, we have derived an integral formula for the skin-friction coefficient of compressible
boundary layers that isolates the contribution of the laminar skin-friction coefficient, the Favre-
Reynolds stresses, the mean-flow streamwise inhomogeneity and the change of viscosity due to
the temperature gradients. This identity is the compressible-flow version of that obtained by
Elnahhas and Johnson (2022) for incompressible boundary layers. It allows for the quantification
of the contribution of different terms in the streamwise momentum equation to the wall-shear
stress. The identity removes the dependence on the upper bound of integration and is therefore
valid for compressible boundary layers with an unbounded domain in the wall-normal direction.
Just like the incompressible counterpart proposed by Elnahhas and Johnson (2022) and the
identity proposed by Renard and Deck (2016), the derivation adopts an unbounded integration
along the wall-normal direction.

The three-fold repeated integration identity of Gomez et al. (2009), which is the compressible
version of the incompressible identity found by Fukagata et al. (2002), and the two-fold repeated
integration identities of Wenzel et al. (2022) and Xu et al. (2022) all simplify to the compressible
von Kármán momentum integral equation when the upper limit of integration is asymptotically
large. We have also proved that the upper integration bound used to derive the identities has a
significant impact on the contribution of the terms of the streamwise momentum equation on the
wall friction. Therefore, this problem prevents the use of these identities for the quantification
of the effect of the Favre-Reynolds stresses on the wall friction.

The multifold integral method of Wenzel et al. (2022) was studied, too. Their identity also
reduces to the von Kármán momentum integral equation for an asymptotically large integra-
tion bound. As the number of integrations becomes asymptotically large, we have proved by
asymptotic methods that the identity degenerates to the definition of the skin-friction coefficient,
revealing no information about the physics of the boundary layer.

In the analysis of a Mach 2.5 turbulent boundary layer with an adiabatic wall, our new
integral identity shows that the Favre-Reynolds stresses dominate the boundary-layer dynamics,
contributing the most to the skin-friction coefficient. The mean-flow streamwise inhomogeneity
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has an opposite effect on the wall friction to that of the Favre-Reynolds stresses, while the
wall-normal momentum flux has a smaller impact. The term due to the temperature-dependent
viscosity and the laminar term are negligible. All the terms in the identity decrease with the
Reynolds number except for the term related to the mean-flow streamwise inhomogeneity.

The identitywill serve the useful purpose of computing thewall-shear stress of a compressible
turbulent boundary layer by post-processing experimental data measured along the wall-normal
direction. This application of the identity is particularly noteworthy in the compressible regime,
where obtaining the wall-shear stress by directly measuring the velocity gradient at the wall is
an immense challenge (Goyne et al., 2003). The identity could also be helpful to evince how
flow-control methods, designed for example to attenuate the wall friction, modify the momentum
and energy transfer in a turbulent boundary layer. Compressible transitional boundary layers can
also be investigated by using the method developed herein (Zhou et al., 2022; Tong et al., 2022;
Chen et al., 2022).
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A The compressible von Kármán momentum integral equation

The compressible von Kármán momentum integral equation is derived as follows. Integrating
(2.12) from the wall to infinity leads to

¯̀
'4

mD̄

mH

����
H=0

=

∫ ∞

0

[
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(A.1)

By considering a free-stream potential flow with constant density d4 = 1 and streamwise-varying
U4, equation (A.1) becomes the compressible von Kármán momentum integral equation

C 5
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d\
dG
+ X + 2\
U4

dU4
dG

, (A.2)

where
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d4U4
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are the compressible displacement thickness and momentum thickness, respectively. Equation
(A.2) is the scaled form of (7-61) of White (2006) when their parameter "04 is null.

B The compressible laminar boundary-layer solution

The compressible Blasius boundary layer without a streamwise pressure gradient possesses a
similarity solution (Stewartson, 1964),

D = * = � ′([), E = + =
) ([2� ′ − �)√

2G'4
, ) = ) ([). (B.1)

where [2 = )−1
∫ [

0 ) ([̌)d[̌, the similarity variable [ is

[ =
1
B

∫ H

0
d(G, Ȟ)dȞ,

and B is defined in (2.21). The prime denotes differentiation with respect to [. The compressible
Blasius functions � ([) and ) ([) are determined by the boundary-value problem

(`� ′′/)) ′ + �� ′′ = 0
(`) ′/)) ′ + %A�) ′ + `(W − 1)%AM2

∞(� ′′)2/) = 0,
� = � ′ = 0, at [ = 0,

� ′ = 1, ) ′ = 0, as [→∞,


(B.2)

where the Prandtl number %A = 0.707 and the dynamic viscosity `()) = )l with l = 0.76
(Stewartson, 1964). The power law is adopted for the dynamic viscosity in the analysis of the
laminar boundary layer, although the decomposition of the skin-friction coefficient is valid for
any viscosity law. The boundary conditions for the wall temperature are ) = )F and ) ′(0) = 0
for isothermal and adiabatic walls, respectively.

For a zero-pressure-gradient boundary layer, the displacement thickness and the momentum
thickness (A.3) reduce to

X(G) ≡ B
∫ ∞

0

(
1 − �

′

)

)
)d[ and \ (G) ≡ B

∫ ∞

0
(1 − � ′) � ′d[. (B.3)

The skin-friction coefficient is proportional to 1/
√
G, as shown by (6.71) of Anderson (2000).

The decomposition of the skin-friction coefficient for a laminar boundary layer simplifies to
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where C ¯̀ + C\ + C\E = 0. The momentum thicknesses reduce to
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where H/C is a function of [ and is expressed as

H

C
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For a laminar boundary layer, the terms are
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