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The nonlinear evolution of free-stream vortical disturbances entrained in the entrance7

region of a circular pipe is investigated using asymptotic and numerical methods. Attention8
is focused on the low-frequency disturbances that induce streamwise elongated structures. A9
pair of vortical modes with opposite azimuthal wavenumbers is used to model the free-stream10
disturbances. Their amplitude is assumed to be intense enough for nonlinear interactions to11
occur inside the pipe. The formation and evolution of the perturbation flow are described12
by the nonlinear unsteady boundary-region equations in the cylindrical coordinate system,13
derived and solved herein for the first time. Matched asymptotic expansions are employed14
to construct appropriate initial conditions and the initial-boundary value problem is solved15
numerically by a marching procedure in the streamwise direction. Numerical results show16
the stabilising effect of nonlinearity on the intense algebraic growth of the disturbances and17
an increase of the wall-shear stress due to the nonlinear interactions. A parametric study18
is carried out to evince the effect of the Reynolds number, the streamwise and azimuthal19
wavelengths, and the radial length scale of the inlet disturbance on the nonlinear flow20
evolution. Elongated pipe-entrance nonlinear structures (EPENS) occupying the whole pipe21
cross-section are discovered. EPENS with ℎ-fold rotational symmetry comprise ℎ high-22
speed streaks positioned near the wall, and ℎ low-speed streaks centred around the pipe core.23
These distinct structures display a striking resemblance to nonlinear travelling waves found24
numerically and observed experimentally in fully developed pipe flow. Good agreement of25
our mean-flow and root mean square data with experimental measurements is obtained.26

Key words:27

1. Introduction28

As one of the most long-standing problems in fluid dynamics, stability and transition in29
pipe flow have puzzled engineers and scientists since the prominent experimental work30
of Reynolds (1883). Due to wide industrial applications, engineers have aimed to design31
efficient and durable pipeline systems by estimating the conditions under which the pipe flow32
is laminar or turbulent. This objective is driven by the large difference in pressure gradient33
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required to drive laminar and turbulent flows in a pipe. Scientists have also been intrigued by34
the enigmatic physical mechanisms behind the instability and transition phenomena observed35
in experiments.36

Earlier investigations of pipe flow date back to the independent studies of Hagen (1839)37
and Poiseuille (1844), where the linear relationship between pressure drop and volume flow38
rate for laminar flow was obtained. This relationship is now known as the Hagen-Poiseuille39
law, which holds only sufficiently downstream where the flow is fully developed, i.e. the40
velocity distribution is independent of the streamwise coordinate and its profile is parabolic.41
Near the pipe inlet, the velocity field varies in the streamwise direction and the terminologies42
developing pipe flow and pipe entrance flow are adopted. Considerable research effort has43
been focused on the stability and transition of the fully developed region, but much less44
attention has been devoted to the flow in the entrance region of the pipe. In this paper, we45
thus aim to investigate how free-stream vortical disturbances are entrained in the entrance46
region of a circular pipe and how the induced disturbances grow and evolve nonlinearly47
inside the pipe.48

1.1. Fully developed pipe flow49

The stability and transition of fully developed laminar pipe flow cannot be explained by the50
classical linear stability theory because the parabolic profile is stable to infinitesimally small51
disturbances. The reader is referred to Rayleigh (1892), Sexl (1927), Pekeris (1948), Corcos52
& Sellars (1959) and Gill (1965) for theoretical studies, and to Davey & Drazin (1969),53
Crowder & Dalton (1971), Garg & Rouleau (1972), Salwen & Grosch (1972) and Meseguer54
& Trefethen (2003) for numerical studies. However, transition in pipe flow is usually observed55
in experiments at moderate Reynolds numbers. This discrepancy has led to the inclusion of56
nonlinear effects in the study of pipe-flow stability. Weakly nonlinear theory was first applied57
independently by Davey & Nguyen (1971) and Itoh (1977), but the results contradicted58
each other. Davey & Nguyen (1971) reported that fully developed pipe flow was unstable59
to small but finite axisymmetric centre-mode disturbances when the disturbance amplitude60
exceeded a critical value, while the flow was found to be stable by Itoh (1977). The problem61
was reexamined by Davey (1978), who suggested that neither of those results was reliable.62
Direct numerical simulations performed by Patera & Orszag (1981) failed to find any finite-63
amplitude axisymmetric equilibria and suggested that the use of weakly nonlinear theory64
away from the neutral stability curve may be invalid. Smith & Bodonyi (1982) identified65
neutral disturbances of finite amplitude by employing the nonlinear critical layer theory.66

The research interest then shifted from solving the eigenvalue problem established by67
the modal stability theory to the temporal initial value problem pertaining to the non-68
modal stability theory. Since the linear stability theory captures the long-time disturbance69
behaviour but overlooks the short-time behaviour (Kerswell 2005; Schmid 2007), at short70
times, disturbances may experience algebraic transient growth before the ultimate exponential71
decay (e.g., Böberg & Brösa 1988). One related approach is to identify the optimal disturbance72
that achieves the maximum transient energy growth. Studies on transient growth in time73
have revealed that optimal disturbances have a vanishing streamwise wavenumber and a74
unity azimuthal wavenumber (Bergström 1992; Schmid & Henningson 1994; O’Sullivan &75
Breuer 1994). Bergström (1993) and Schmid & Henningson (1994) also extended the work to76
disturbances with small but non-zero streamwise wavenumber. The spatial transient growth77
has been reported by Tumin (1996) and Reshotko & Tumin (2001). Stationary disturbances78
were found to exhibit a more significant amplification than non-stationary ones (Reshotko79
& Tumin 2001). Optimal disturbances provide the upper bound for the possible energy80
amplification, which is optimised over all possible initial conditions.81

Faisst & Eckhardt (2003) and Wedin & Kerswell (2004) independently discovered82
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nonlinear travelling waves in pipe flow for the first time, which were later observed in83
the experiments of Hof et al. (2004) and Hof et al. (2005). Inspired by these results, the84
nonlinear dynamical system approach has become a valuable tool in the last two decades85
(Eckhardt et al. 2007; Avila et al. 2023). From the perspective of dynamical theory, all initial86
conditions of the pipe-flow system that ultimately converge to the laminar state form the basin87
of attraction of the laminar state. Transition occurs when the initial conditions are outside88
of this basin boundary. The nonlinear non-modal stability theory describes the dynamics of89
finite disturbances within and beyond the basin boundary (Kerswell et al. 2014; Kerswell90
2018). Optimisation methods have been utilised within this nonlinear theory to compute the91
so-called minimal seed (Pringle & Kerswell 2010; Pringle et al. 2012), i.e. the disturbance92
with the smallest energy for turbulence to occur. The interested reader is referred to Kerswell93
(2018) for an exhaustive review.94

1.2. Pipe-entrance flow95

The absence of linear instability in fully developed pipe flow directed interest to the flow96
in the developing entrance region. As the uniform flow enters the pipe inlet, a laminar97
boundary layer grows along the wall. One can then expect this pipe-entrance boundary layer98
to be linearly unstable. Research efforts first focused on the computation of the velocity and99
pressure distributions of this base flow (Langhaar 1942; Hornbeck 1964; Sparrow et al. 1964;100
Christiansen & Lemmon 1965).101

The first temporal stability analysis of the pipe entrance flow was performed by Tatsumi102
(1952) by using a boundary-layer model that revealed the linear instability of the flow103
subjected to axisymmetric disturbances. The same problem was investigated numerically by104
Huang & Chen (1974a) and generalised to non-axisymmetric disturbances (Huang & Chen105
1974b; Shen et al. 1976) and spatially unstable disturbances (Gupta & Garg 1981; Garg106
1981; Garg & Gupta 1981; Garg 1983). Considerable discrepancies were observed among107
the results obtained in these studies, which may be attributed to the varying accuracies in108
the calculation of the laminar base flow (da Silva & Moss 1994). da Silva & Moss (1994)109
reexamined this stability problem with improved accuracy, obtaining good agreement with110
results by Gupta & Garg (1981). The critical Reynolds number based on the pipe radius was111
approximately 10 000 in both studies.112

Although these studies focused on the stability of flow profiles at different streamwise113
locations in the pipe entrance, the receptivity problem - i.e. how entrained free-stream114
disturbances excite instability in the entrance region - was not considered. This problem is,115
however, of central importance because, as even remarked by Reynolds (1883), the pipe inlet116
disturbances have a significant effect on the stability and laminar-turbulent transition of the117
pipe-entrance flow. By controlling the disturbance level at the pipe inlet, the flow studied by118
Reynolds (1883) was maintained laminar up to Reynolds numbers ranging from 2000 to 13119
000. This number was further increased to 100 000 in the experiments of Pfenniger (1961).120

Given the importance of the inlet perturbations, it is thus surprising that only a limited121
number of studies exist on this problem. In the experiments of Sarpkaya (1975), disturbances122
were introduced on the surface of the pipe entrance, and the occurrence of instability was123
confirmed. The reported critical Reynolds number was much lower than that estimated by124
theoretical studies, which may be ascribed to the finite-amplitude disturbances induced in125
the entrance flow. The dynamics of localised turbulence, i.e. puffs and slugs, was studied126
in the experimental work of Wygnanski & Champagne (1973), where the disturbances were127
introduced at the pipe inlet using a honeycomb, an orifice plate and a circular disk. Wygnanski128
et al. (1975) further investigated the propagation of turbulent puffs initiated by an impulsive129
disturbance at the entrance region. The experimental study of Zanoun et al. (2009) focused130
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Figure 1: Schematic of the entrance region of a pipe (not to scale).

on the effect of the inlet flow conditions on the flow transition in pipe and channel flows.131
Different transition Reynolds numbers were measured at different streamwise positions.132

Direct numerical simulations were conducted by Wu et al. (2015) and Wu et al. (2020)133
to investigate the flow transition to fully developed turbulence triggered by localised inlet134
disturbances. In Wu et al. (2015), the fully developed parabolic laminar velocity profile was135
chosen as the inlet base flow in most cases, and the plug flow was utilised in one case. The136
most intense inlet disturbances required to trigger transition pertained to the latter case.137

Under the small-amplitude assumption, Ricco & Alvarenga (2022) performed the first138
theoretical study of the entrainment of free-stream vortical disturbances in the pipe entrance.139
Their interest was in how these disturbances are affected by the pipe confinement, and on140
how they grow and develop downstream. The perturbation flow at the pipe inlet was obtained141
by a matched asymptotic composite solution between a Bessel function vortical flow in the142
pipe core and a boundary-layer flow near the pipe wall. A streamwise-elongated streaky flow143
formed within the base-flow boundary layer and evolved towards the pipe centreline farther144
downstream. A good agreement between the computed velocity profiles and the available145
experimental data was found when the measured free-stream disturbances were weak.146

1.3. Objectives147

We investigate the entrainment of flow disturbances into the entrance of a circular pipe, and148
the downstream growth and evolution of the induced nonlinear vortical disturbances along the149
entrance region. The oncoming disturbances are physically realistic, i.e. they can be generated150
at the pipe inlet in a laboratory. The nonlinear boundary-region equations are derived in the151
cylindrical geometry for the first time, and solved numerically by marching downstream. Our152
study is the nonlinear extension of Ricco & Alvarenga (2022), and the first theoretical study153
of the entrainment and downstream evolution of finite-amplitude disturbances in the entrance154
region of a circular pipe.155

In §2, the scaling and assumptions are presented, together with the mathematical formu-156
lation and numerical procedures. Numerical results are discussed in §3. A summary and157
conclusions are given in §4.158

2. Mathematical formulation and numerical procedures159

We consider a circular pipe of radius 𝑅∗ described by a cylindrical coordinate system160
{𝑥∗, 𝑟∗, \}, where 𝑥∗ and 𝑟∗ are the streamwise and radial directions, and \ is the azimuthal161
angle. The pipe inlet is located at 𝑥∗ = 0, while the pipe axis and the pipe wall are at 𝑟∗ = 0162
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and 𝑟∗ = 𝑅∗, respectively. The superscript * refers to dimensional quantities hereafter. A163
schematic of the flow is shown in figure 1.164

A pressure-driven incompressible flow is assumed to enter the pipe with a uniform velocity165
𝑈∗
∞ at 𝑥∗ = 0. Superimposed on the oncoming flow are small-amplitude gust-type vortical166

fluctuations that can be modelled by a Fourier–Bessel series with Fourier expansions in 𝑥∗, \167
and time 𝑡∗, and a Bessel expansion in 𝑟∗. A pair of vortical modes with the same frequency 𝑓 ∗168
(and hence the same streamwise wavenumber 𝑘∗𝑥), but opposite azimuthal wavenumbers±𝑚0,169
is considered (𝑚0 ⩾ 0 is taken without losing generality). The circumferential wavelength170
of the free-stream gust at the pipe radius, _∗ = 2𝜋𝑅∗/𝑚0, is chosen as the reference length.171
The velocities and time are normalised by 𝑈∗

∞ and _∗/𝑈∗
∞, respectively, while the pressure172

𝑝∗ is normalised by 𝜌∗𝑈∗2
∞ , where 𝜌∗ is the density of the fluid.173

Following Ricco & Alvarenga (2022), a single pair of free-stream gusts is passively174
advected by 𝑈∗

∞ and expressed as175

𝒖 − {1, 0, 0} = 𝜖
{
�̂�∞
+,𝒎0𝑒

𝑖𝑚0 \ + �̂�∞
−,𝒎0𝑒

−𝑖𝑚0 \
}
𝑒𝑖𝑘𝑥 (𝑥−𝑡 ) + c.c., (2.1)176

where177

�̂�∞
±,𝒎0 (𝑟; 𝑙) =

{
�̂�∞𝑚0

𝐽𝑚0 (𝑟0),
�̂�∞𝑚0

𝐽𝑚0 (𝑟0)
𝑟0

,
∓𝑖�̂�∞

𝑚0
𝐽′𝑚0

(𝑟0)
b𝑚0 ,𝑙

}
= O(1). (2.2)178

Here, 𝒖 = {𝑢, 𝑣, 𝑤} corresponds to the velocity components in the 𝑥, 𝑟 and \ directions, 𝜖 ≪ 1179
is a measure of the amplitude of the disturbances, the quantities {�̂�∞𝑚0

, �̂�∞𝑚0
, �̂�∞

𝑚0
} = O(1) are180

complex, 𝐽𝑚0 is the Bessel function of the first kind of order 𝑚0, 𝑟0 = 𝑟b𝑚0 ,𝑙/2𝑅 with b𝑚0 ,𝑙181
being the 𝑙th zero of the Bessel function 𝐽𝑚0 , and c.c. denotes the complex conjugate. The182
notations 𝑚0 and 𝑟0 correspond to 𝑚 and 𝑟 in Ricco & Alvarenga (2022). A similar expansion183
of the free-stream vortical disturbances has been used in Ricco et al. (2011) and Marensi184
et al. (2017) for flat-plate boundary layers, Marensi & Ricco (2017) for concave boundary185
layers, and Ricco & Alvarenga (2021) for a channel flow. The expansion (2.1)–(2.2) is a186
model of free-stream vortical disturbances that could be realised in a laboratory by a grid of187
vibrating ribbons, a polar equivalent of the careful receptivity studies of Dietz (1999) and188
Borodulin et al. (2021).189

Our focus is on oncoming disturbances with a long streamwise wavelength (i.e. low190
frequency), i.e. 𝑘𝑥 ≪ 1, which have been experimentally demonstrated to be the most likely191
to penetrate into a boundary layer and form streamwise-elongated structures (Matsubara &192
Alfredsson 2001). Under the low-frequency assumption, the continuity equation of the gust193
disturbances becomes194

b𝑚0 ,𝑙 �̂�
∞
𝑚0

+ 𝑚0�̂�
∞
𝑚0

= 0, (2.3)195

where 𝜕𝑢/𝜕𝑥 = O(𝑘𝑥) ≪ 1 has been neglected.196
As the oncoming flow enters the pipe, a boundary layer develops on the pipe wall. As197

the flow evolves downstream, the boundary-layer thickness becomes comparable with the198
azimuthal wavelength _∗ at 𝑥 = O(𝑅𝑒_), where 𝑅𝑒_ = 𝑈∗

∞_
∗/a∗ ≫ 1, and a∗ is the kinematic199

viscosity of the fluid. A distinguished scaling is 𝑘𝑥 = O
(
𝑅𝑒−1

_

)
, and the two slow variables200

scaled by 𝑘𝑥 are 𝑡 = 𝑘𝑥𝑡 = O(1) and 𝑥 = 𝑘𝑥𝑥 = O(1). In this region, viscous–diffusion201
effects in the radial and azimuthal directions are comparable. The flow can be described by202
the nonlinear boundary-region equations (Ricco et al. 2011), written and solved herein in203
cylindrical coordinates for the first time. The linear counterpart of these equations, obtained204
for the turbulent Reynolds number 𝑟𝑡 = 𝜖𝑅𝑒_ ≪ 1, was derived and solved in Ricco &205
Alvarenga (2022) for studying the growth of small-amplitude disturbances. The current206
research relaxes the linear assumption because 𝑟𝑡 = O(1). Nonlinear interactions are thus207
taken into account.208
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2.1. Governing equations209

The boundary-region equations are derived from the incompressible Navier-Stokes equations210

∇ · 𝒖 = 0, (2.4)211

𝜕𝒖

𝜕𝑡
+ (𝒖 · ∇)𝒖 = −∇𝑝 + 1

𝑅𝑒_
∇2𝑢. (2.5)212

The velocity 𝒖 and the pressure 𝑝 are decomposed into the laminar base flow and the213
perturbation flow, namely215

{𝒖, 𝑝} = {𝑼, 𝑃} + {�̃�, 𝑝}

= {𝑈 (𝑥, 𝑟), 𝑘𝑥𝑉 (𝑥, 𝑟), 0, 𝑃(𝑥)} + 𝑟𝑡

{
�̄�, 𝑘𝑥 �̄�, 𝑘𝑥�̄�,

𝑘𝑥
𝑅𝑒_

𝑝 + Γ(𝑥)
}
,

(2.6)216

where the perturbation flow is expressed as a Fourier series in \ and 𝑡:217

{�̄�, �̄�, �̄�, 𝑝, Γ} =
∞∑︁

𝑚,𝑛=−∞
{�̂�𝑚,𝑛, �̂�𝑚,𝑛, �̂�𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛}𝑒𝑖𝑚\+𝑖𝑛𝑡 . (2.7)218

The pressure correction Γ(𝑥) ensures that the mass flow rate is conserved at each streamwise219
location and time instant as the modes �̂�0,𝑛 are generated by the nonlinear interactions.220
Therefore, Γ̂𝑚,𝑛 ≠ 0 only if 𝑚 = 0. As the physical quantities are real, the Hermitian property221
applies, i.e.222

(𝑞𝑚,𝑛)c.c. = 𝑞−𝑚,−𝑛, (2.8)223

where 𝑞𝑚,𝑛 represents any Fourier coefficient {�̂�𝑚,𝑛, �̂�𝑚,𝑛, �̂�𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛} in (2.7).224
Substituting (2.6) and (2.7) into the full Navier-Stokes equations (2.4)–(2.5), and taking225

the limits 𝑘−1
𝑥 , 𝑅𝑒_ → ∞ with F = 𝑘𝑥𝑅𝑒_ = O(1) leads to the boundary-layer equations226

governing the laminar base flow {𝑈,𝑉, 𝑃} and to the unsteady nonlinear boundary-region227
equations governing the perturbation flow {�̂�𝑚,𝑛, �̂�𝑚,𝑛, �̂�𝑚,𝑛, 𝑝𝑚,𝑛, Γ̂𝑚,𝑛}.228

The laminar boundary-layer equations read (Hornbeck 1964)229

𝜕𝑈

𝜕𝑥
+ 𝑉

𝑟
+ 𝜕𝑉

𝜕𝑟
= 0, (2.9)230

𝑈
𝜕𝑈

𝜕𝑥
+𝑉 𝜕𝑈

𝜕𝑟
= −d𝑃

d𝑥
+ 1
F

(
1
𝑟

𝜕𝑈

𝜕𝑟
+ 𝜕2𝑈

𝜕𝑟2

)
. (2.10)231

Equation (2.9) and (2.10) are solved together with the conservation of mass flow rate at each232
streamwise location,233 ∫ 𝑅

0
𝑈𝑟d𝑟 =

𝑅2

2
, (2.11)234

and are subject to the no-slip and no-penetration conditions at the wall and the symmetry235
conditions at the pipe axis:236

𝑟 = 𝑅 : 𝑈 = 𝑉 = 0, (2.12)237

𝑟 = 0 :
𝜕𝑈

𝜕𝑟
= 0, 𝑉 = 0. (2.13)238

The initial condition is obtained by a matched asymptotic combination of the Blasius flow239
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near the pipe wall and an inviscid flow around the pipe core (Ricco & Alvarenga 2022),241

𝑈 (𝑥, 𝑟) =d𝐹
d[

− 𝛽𝑖1/2

2
√

2𝜋𝑅𝑒1/2
_

∫ +∞+𝑖𝛾

−∞+𝑖𝛾

𝑒𝑖Z 𝑥

Z1/2𝐼1(Z𝑅)

[
𝐼1(Z𝑟)
Z𝑟

+ 𝐼 ′1(Z𝑟)
]

dZ+

𝛽𝑖1/2

2
√

2𝜋𝑅𝑒1/2
_

∫ +∞+𝑖𝛾

−∞+𝑖𝛾

𝑒𝑖Z 𝑥

Z1/2

[
𝐼 ′1(Z𝑅)
𝐼1(Z𝑅)

+ 1
Z𝑅

]
dZ, 𝑥 ≪ 1

(2.14)242

where [ = (𝑅 − 𝑟) (𝑅𝑒_/2𝑥)1/2, 𝐹 satisfies the Blasius equation 𝐹′′′ + 𝐹𝐹′′ = 0, the prime243
denotes differentiation, 𝛽 = lim[→∞([ − 𝐹) = 1.217..., 𝐼1 is the modified Bessel function of244
the first kind, and 𝛾 ∈ R < 0. Equations (2.9)–(2.11), supplemented by conditions (2.12)–245
(2.14), are solved by an improved version of the numerical scheme of Hornbeck (1964). A246
detailed description of the numerical procedure is provided in the supplementary material247
S1 of Ricco & Alvarenga (2022). The numerical results are discussed in §4.1 of Ricco &248
Alvarenga (2022).249

The perturbation-flow unsteady nonlinear boundary-region equations are as follows.250
The continuity equation is251

𝜕�̂�𝑚,𝑛

𝜕𝑥
+
�̂�𝑚,𝑛

𝑟
+
𝜕�̂�𝑚,𝑛

𝜕𝑟
+ 𝑖𝑚

𝑟
�̂�𝑚,𝑛 = 0. (2.15)252

The 𝑥-momentum equation is254 (
𝑖𝑛 + 𝜕𝑈

𝜕𝑥
+ 𝑚2

F 𝑟2

)
�̂�𝑚,𝑛 +𝑈

𝜕�̂�𝑚,𝑛

𝜕𝑥
+

(
𝑉 − 1

F 𝑟

)
𝜕�̂�𝑚,𝑛

𝜕𝑟
+ �̂�𝑚,𝑛

𝜕𝑈

𝜕𝑟
−

1
F

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 +
dΓ̂0,𝑛

d𝑥
= 𝑟𝑡X̂𝑚,𝑛.

(2.16)255

The 𝑟-momentum equation is257 (
𝑖𝑛 + 𝜕𝑉

𝜕𝑟
+ 𝑚2 + 1

F 𝑟2

)
�̂�𝑚,𝑛 +𝑈

𝜕�̂�𝑚,𝑛

𝜕𝑥
+ �̂�𝑚,𝑛

𝜕𝑉

𝜕𝑥
+

(
𝑉 − 1

F 𝑟

)
𝜕�̂�𝑚,𝑛

𝜕𝑟
+

1
F

𝜕𝑝𝑚,𝑛

𝜕𝑟
− 1
F

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 + 2𝑖𝑚
F 𝑟2 �̂�𝑚,𝑛 = 𝑟𝑡Ŷ𝑚,𝑛.

(2.17)258

The \-momentum equation is260 (
𝑖𝑛 + 𝑉

𝑟
+ 𝑚2 + 1

F 𝑟2

)
�̂�𝑚,𝑛 +𝑈

𝜕�̂�𝑚,𝑛

𝜕𝑥
+

(
𝑉 − 1

F 𝑟

)
𝜕�̂�𝑚,𝑛

𝜕𝑟
+ 𝑖𝑚

F 𝑟
𝑝𝑚,𝑛−

1
F

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 − 2𝑖𝑚
F 𝑟2 �̂�𝑚,𝑛 = 𝑟𝑡Ẑ𝑚,𝑛.

(2.18)261

The right-hand sides of the momentum equations (2.16)–(2.18) denote the nonlinear terms262

X̂𝑚,𝑛 = −
(
𝜕̂̄𝑢�̄�
𝜕𝑥

+ 𝜕̂̄𝑢�̄�
𝜕𝑟

+
̂̄𝑢�̄� + 𝑖𝑚 ̂̄𝑢�̄�

𝑟

)
𝑚,𝑛

,

Ŷ𝑚,𝑛 = −
(
𝜕̂̄𝑢�̄�
𝜕𝑥

+ 𝜕 ̂̄𝑣�̄�
𝜕𝑟

+
̂̄𝑣�̄� + 𝑖𝑚 ̂̄𝑣�̄� − ̂̄𝑤�̄�

𝑟

)
𝑚,𝑛

,

Ẑ𝑚,𝑛 = −
(
𝜕 ̂̄𝑢�̄�
𝜕𝑥

+ 𝜕 ̂̄𝑣�̄�
𝜕𝑟

+ 𝑖𝑚̂̄𝑤�̄�
𝑟

+ 2̂̄𝑣�̄�
𝑟

)
𝑚,𝑛

,


(2.19)263
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where ˆ indicates Fourier transformed quantities. In the limit 𝑟𝑡 ≪ 1, the linearised boundary-264
region equations of Ricco & Alvarenga (2022) are recovered. The pressure correction Γ̂0,𝑛265
becomes a further unknown variable for 𝑚 = 0, and one more condition is thus required266
to solve the system. Analogous to (2.11) for the base-flow problem, this condition is the267
conservation of mass flow rate at each instant in time and at each streamwise location. As268
discussed in Appendix A, this condition is expressed as269 ∫ 𝑅

0
�̂�0,𝑛𝑟d𝑟 = 0. (2.20)270

Since the partial differential system (2.15)–(2.20) is parabolic in the streamwise direction271
and elliptic in the radial and azimuthal directions, appropriate initial and boundary conditions272
are needed. These conditions are presented in §2.2. Further treatment of (2.15)–(2.20) is273
carried out in §2.3 for different values of 𝑚. The numerical procedures are discussed in §2.4.274

2.2. Initial and boundary conditions275

While the streamwise velocity of the induced disturbances acquires an order-one amplitude276
at 𝑥 = O(1), the velocity fluctuations near the pipe inlet are of small amplitude 𝑂 (𝜖) and277
nonlinear effects can therefore be neglected there. Hence the initial conditions derived by278
Ricco & Alvarenga (2022) can be used. Comparison of the velocity expansions (2.6) here279
and (2.6) in Ricco & Alvarenga (2022) leads to the relations280 {

�̂�𝑚0 ,−1, �̂�𝑚0 ,−1
}
=

1
𝑅𝑒_

{
𝑖𝑚0

𝑘𝑥
�̄�𝑥 + �̄� (0)

𝑥 ,
𝑖𝑚0

𝑘𝑥
�̄�𝑟 + �̄� (0)

𝑟

}
, (2.21)281

where �̄�𝑥 , �̄�𝑟 , �̄� (0)
𝑥 and �̄� (0)

𝑟 are given by the analytical expressions (3.25)–(3.27) and282
(3.32) in Ricco & Alvarenga (2022). The azimuthal velocity �̂�𝑚0 ,−1 can be found through283
the continuity equation (2.15), with �̂�𝑚0 ,−1 and �̂�𝑚0 ,−1 given by (2.21). For the opposite284
wavenumber 𝑚 = −𝑚0, the same streamwise and radial components but opposite azimuthal285
component are derived286 {

�̂�−𝑚0 ,−1, �̂�−𝑚0 ,−1, �̂�−𝑚0 ,−1
}
=

{
�̂�𝑚0 ,−1, �̂�𝑚0 ,−1,−�̂�𝑚0 ,−1

}
. (2.22)287

It also occurs that288

�̂�𝑚,𝑛 = �̂�𝑚,𝑛 = �̂�𝑚,𝑛 = 0 for (𝑚, 𝑛) ≠ (±𝑚0,−1). (2.23)289

Since the streamwise derivative of 𝑝𝑚,𝑛 is negligible in the 𝑥-momentum equation (2.16)290
under the low-frequency assumption, no initial condition for 𝑝𝑚,𝑛 is required.291

In the radial direction, equations (2.15)–(2.20) are subjected to the no-slip and no-292
penetration conditions at the wall (𝑟 = 𝑅),293

�̂�𝑚,𝑛 = �̂�𝑚,𝑛 = �̂�𝑚,𝑛 = 0, (2.24)294

while the boundary conditions at the pipe axis (𝑟 = 0) are295

�̂�′𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, 𝑝′𝑚,𝑛 = 0, for 𝑚 = 0,
�̂�𝑚,𝑛 = 0, �̂�′𝑚,𝑛 = 0, �̂�′

𝑚,𝑛 = 0, 𝑝𝑚,𝑛 = 0, for |𝑚 | = 1,
�̂�𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, 𝑝𝑚,𝑛 = 0, for |𝑚 | ⩾ 2,

 (2.25)296

where the prime indicates the derivative with respect to 𝑟 . Conditions (2.25) are derived297
following Batchelor & Gill (1962), Tuckerman (1989) and Lewis & Bellan (1990), who298
studied the physical constraints on the coefficients of Fourier expansions in cylindrical299
coordinates (refer also to supplementary material S3 of Ricco & Alvarenga (2022)).300
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2.3. Initial-boundary value problems301

For convenience of the numerical calculations, the nonlinear boundary-region equations302
(2.15)–(2.20), together with the initial conditions (2.21)–(2.23) and the boundary conditions303
(2.24)–(2.25), are solved in different forms according to the value of 𝑚.304

Case I For the components with 𝑚 ≠ 0, the pressure 𝑝𝑚,𝑛 and the azimuthal velocity305
�̂�𝑚,𝑛 can be eliminated from (2.15)–(2.19) as in Ricco & Alvarenga (2022). The resulting306
equations read307 (
𝑖𝑛 + 𝜕𝑈

𝜕𝑥
+ 𝑚2

F 𝑟2

)
�̂�𝑚,𝑛 +

(
𝑉 − 1

F 𝑟

)
𝜕�̂�𝑚,𝑛

𝜕𝑟
+𝑈

𝜕�̂�𝑚,𝑛

𝜕𝑥
− 1
F

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 + 𝜕𝑈

𝜕𝑟
�̂�𝑚,𝑛 = 𝑟𝑡X̂𝑚,𝑛,

(2.26)308310

𝑉�̂�𝑚,𝑛 +𝑉𝑟
𝜕�̂�𝑚,𝑛

𝜕𝑟
+𝑉𝑥

𝜕�̂�𝑚,𝑛

𝜕𝑥
+𝑉𝑟𝑟

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 +𝑉𝑥𝑟

𝜕2�̂�𝑚,𝑛

𝜕𝑥𝜕𝑟
+𝑉𝑟𝑟𝑟

𝜕3�̂�𝑚,𝑛

𝜕𝑟3 +𝑉𝑥𝑟𝑟

𝜕3�̂�𝑚,𝑛

𝜕𝑥𝜕𝑟2 +

𝑉𝑟𝑟𝑟𝑟
𝜕4�̂�𝑚,𝑛

𝜕𝑟4 + �̂��̂�𝑚,𝑛 +𝑈𝑟

𝜕�̂�𝑚,𝑛

𝜕𝑟
+𝑈𝑥

𝜕�̂�𝑚,𝑛

𝜕𝑥
+𝑈𝑟𝑟

𝜕2�̂�𝑚,𝑛

𝜕𝑟2 +𝑈𝑥𝑟

𝜕2�̂�𝑚,𝑛

𝜕𝑥𝜕𝑟
+

𝑈𝑥𝑟𝑟

𝜕3�̂�𝑚,𝑛

𝜕𝑥𝜕𝑟2 = 𝑟𝑡
𝑟2

𝑚2
𝜕2X̂𝑚,𝑛

𝜕𝑥𝜕𝑟
+ 𝑟𝑡Ŷ𝑚,𝑛 +

𝑖𝑟𝑡
𝑚

𝜕
(
𝑟Ẑ𝑚,𝑛

)
𝜕𝑟

,

(2.27)

311

where the coefficients 𝑉,𝑉𝑟 , 𝑉𝑥 , · · · ,𝑈𝑥𝑟𝑟 are given in Appendix B. Only the initial and312
boundary conditions for {�̂�𝑚,𝑛, �̂�𝑚,𝑛} are needed in this case. The initial conditions are given313
in (2.21)–(2.23). The boundary conditions are314

�̂�𝑚,𝑛 = �̂�𝑚,𝑛 = �̂�′𝑚,𝑛 = 0, at 𝑟 = 𝑅 (2.28)315

and316
�̂�𝑚,𝑛 = 0, �̂�′𝑚,𝑛 = 0, �̂�′′′𝑚,𝑛 = 0, for |𝑚 | = 1,
�̂�𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, �̂�′′𝑚,𝑛 = 0, for |𝑚 | = 2,
�̂�𝑚,𝑛 = 0, �̂�𝑚,𝑛 = 0, �̂�′𝑚,𝑛 = 0, for |𝑚 | > 2,

 at 𝑟 = 0. (2.29)317

At the pipe wall, 𝑟 = 𝑅, the last condition �̂�𝑚,𝑛 = 0 in (2.24) is replaced by �̂�′𝑚,𝑛 = 0 in (2.28),318
which is obtained by inserting (2.24) into the continuity equation (2.15). At the pipe axis,319
𝑟 = 0, the conditions for �̂� and �̂�′ in (2.25) for different 𝑚 are replaced following the physical320
constraints proposed by Batchelor & Gill (1962), Khorrami et al. (1989), Tuckerman (1989)321
and Lewis & Bellan (1990), as discussed in supplementary material S3 of Ricco & Alvarenga322
(2022). The azimuthal velocity �̂�𝑚,𝑛 can be obtained a posteriori from the continuity equation323
and the pressure 𝑝𝑚,𝑛 can then be calculated from either the 𝑟-momentum equation (2.17)324
or the \-momentum equation (2.18).325

Case II For the components with𝑚 = 0, the pressure 𝑝0,𝑛 appears only in the 𝑟-momentum326
equation (2.17). The three velocity components {�̂�0,𝑛, �̂�0,𝑛, �̂�0,𝑛} can be solved by the327
continuity, 𝑥- and \-momentum equations,328

𝜕�̂�0,𝑛

𝜕𝑥
+
�̂�0,𝑛

𝑟
+
𝜕�̂�0,𝑛

𝜕𝑟
= 0, (2.30)329 (

𝑖𝑛 + 𝜕𝑈

𝜕𝑥

)
�̂�0,𝑛 +𝑈

𝜕�̂�0,𝑛

𝜕𝑥
+

(
𝑉 − 1

F 𝑟

)
𝜕�̂�0,𝑛

𝜕𝑟
+ �̂�0,𝑛

𝜕𝑈

𝜕𝑟
− 1
F

𝜕2�̂�0,𝑛

𝜕𝑟2 +
dΓ̂0,𝑛

d𝑥
= 𝑟𝑡X̂0,𝑛,

(2.31)

330

(
𝑖𝑛 + 𝑉

𝑟
+ 1
F 𝑟2

)
�̂�0,𝑛 +𝑈

𝜕�̂�0,𝑛

𝜕𝑥
+

(
𝑉 − 1

F 𝑟

)
𝜕�̂�0,𝑛

𝜕𝑟
− 1
F

𝜕2�̂�0,𝑛

𝜕𝑟2 = 𝑟𝑡Ẑ0,𝑛, (2.32)331
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Figure 2: Sketch of Fourier modes induced by a pair of free-stream vortical modes. Dark
grey squares: forcing modes (±𝑚0,±1). Light grey squares: nonlinearly generated modes.

The modes in the shaded area are computed through the Hermitian property (2.8).

together with (2.20) for the conservation of the mass flow rate, as discussed in §2.1. The332
pressure 𝑝0,𝑛 is computed a posteriori by integrating the 𝑟-momentum equation (2.17). The333
boundary conditions for the velocity components and the pressure are given in (2.24) and334
(2.25) for 𝑚 = 0. The initial conditions for �̂�0,𝑛, �̂�0,𝑛, �̂�0,𝑛 are null.335

2.4. Numerical procedures336

The initial-boundary value problems are solved by marching in the streamwise direction337
𝑥. The governing equations for both cases are discretised by second-order finite-difference338
schemes employing a one-sided backward uniform grid along 𝑥 and a central-difference339
uniform grid along 𝑟 . The discretised system of case I forms a block tridiagonal matrix and340
is solved at each 𝑥 location by a standard block tridiagonal matrix algorithm (Cebeci 2002).341
For case II, the composite trapezoidal rule is used for the calculation of the integral (2.20).342
Since the velocity components and the pressure gradient are computed simultaneously, the343
block tridiagonal structure of the matrix is lost. A novel modified block tridiagonal matrix344
algorithm is utilised to accelerate the numerical solution of this system, as discussed in345
Appendix C.346

The computation of the nonlinear terms on the right-hand sides of the momentum equations347
is refined by a predictor–corrector method at each 𝑥 location. In the predictor step, the initial348
approximation of the nonlinear terms uses the results at the previous 𝑥 location to treat the349
discretised nonlinear system explicitly. The velocity computed from the predictor step is used350

Rapids articles must not exceed this page length
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to improve the initial guess in the corrector step. This iteration is repeated until a convergence351
criterion is fulfilled. An under-relaxation method is used to accelerate this procedure. At each352
iteration, nonlinear terms are calculated using the pseudo-spectral method, in which first the353
Fourier coefficients of the velocity components are transformed to the physical space to carry354
out the multiplications, and the products are then transformed back to the spectral space.355
The aliasing error is eliminated by employing the 3/2 rule, which avoids the spurious energy356
cascade from the unresolved high-frequency modes into the resolved low-frequency ones.357
As the Hermitian property is applied for the azimuthal angle \, only the Fourier modes358
with non-negative indices 𝑚 need to be calculated. The modes with negative 𝑚 indices are359
evaluated through (2.8). Figure 2 shows a sketch of the Fourier modes induced by a pair360
of free-steam vortical modes (±𝑚0,±1). Only the modes with 𝑚 = ±𝑚0,±2𝑚0,±3𝑚0, · · ·361
and 𝑛 = ±1,±2,±3, · · · can be generated by nonlinearity. Fourier modes are truncated at362
𝑚 = ±𝑁\ and 𝑛 = ±𝑁𝑡 for the azimuthal wavenumber and the frequency, respectively.363
Resolution checks show that the use of 𝑁𝑡 = 6, 𝑁\ = 12 is sufficient to capture the nonlinear364
effects induced by the free-stream forcing modes with wavenumber 𝑚0 = 2. For larger 𝑚0, a365
correspondingly larger value of 𝑁\ is necessary (e.g. 𝑁\ = 18 for 𝑚0 = 3).366

3. Results367

In the analysis of the flow, the kinetic energy of the free-stream gust averaged over the pipe368
cross-section is kept constant:369

E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
=

1
2𝜋𝑅2

∫ 2𝜋

0

∫ 𝑅

0

(
|�̃� |2 + |�̃� |2 + |�̃� |2

)
𝑟d𝑟d\370

=
4𝜖2

𝑅2

∫ 𝑅

0

[(
�̂�∞𝑚0

𝐽𝑚0 (𝑟0)
)2

+
(
�̂�∞𝑚0

𝐽𝑚0 (𝑟0)
𝑟0

)2

+
(
�̂�∞𝑚0

𝐽′𝑚0
(𝑟0)

𝑚0

)2]
𝑟d𝑟, (3.1)371

372

where the gust velocity components in (2.2) have been used. The relation (2.3) is utilised to373
eliminate �̂�∞

𝑚0
from (3.1). Without losing generality, �̂�∞𝑚0

is fixed at 1 in our analysis. With374
𝑚0 and 𝑙 specified, the only parameter to be determined is �̂�∞𝑚0

, which is found by equating375

E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
to E𝑔𝑢𝑠𝑡

1,1 , the perturbation energy for 𝑚0 = 𝑙 = 1 and �̂�∞𝑚0
= 1. A similar approach was376

adopted in Schmid & Henningson (1994), where the maximum energy amplification was377
computed over initial conditions with the same energy norm. The intensity used to measure378

the fluctuation level of the gust is defined as 𝑇𝑢 =

√︃
(2/3)E𝑔𝑢𝑠𝑡

𝑚0 ,𝑙
.379

In §2, the circumferential wavelength of the gust _∗ at the pipe radius is selected as the380
reference length in order to relate our asymptotic analysis to the boundary-layer analysis of381
Leib et al. (1999), while the numerical results are presented herein with quantities rescaled382
by the pipe radius 𝑅∗, i.e. 𝒖 = 𝒖(𝑥𝑅, 𝑟𝑅; 𝑘𝑥,𝑅, 𝑅𝑒𝑅, 𝑙, 𝑚0), where 𝑥𝑅 = 𝑥∗/𝑅∗, 𝑟𝑅 = 𝑟∗/𝑅∗,383
𝑘𝑥,𝑅 = 𝑘∗𝑥𝑅

∗ and 𝑅𝑒𝑅 = 𝑈∗
∞𝑅

∗/a∗. We focus on the nonlinear evolution of disturbances in384
the parameter space 𝑘𝑥,𝑅 ≪ 1 and 𝑅𝑒𝑅 < 10000, where Tollmien–Schlichting waves are not385
present (refer to figure 2 of Ricco & Alvarenga (2022)). In our reference case, 𝑘𝑥,𝑅 = 0.02,386
𝑅𝑒𝑅 = 1000, 𝑙 = 3, 𝑚0 = 2 and 𝜖 = 0.05 (i.e. 𝑇𝑢 ≈ 4%).387

The intensity of the disturbances is monitored by the root mean square (r.m.s.) of the388
streamwise velocity fluctuation, 𝑢𝑟𝑚𝑠 (Pope 2000, p.687):389

𝑢𝑟𝑚𝑠 = 𝑟𝑡

(
𝑁\∑︁

𝑚=−𝑁\

𝑁𝑡∑︁
𝑛=−𝑁𝑡

���̂�𝑚,𝑛

��2)1/2

, 𝑛 ≠ 0. (3.2)390
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Figure 3: Thick lines: nonlinear streamwise development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 for 𝜖 = 0.001
(dotted), 0.01 (dash-dotted), 0.03 (dashed), 0.05 (solid). Thin lines: linear solutions

rescaled by corresponding 𝜖 value.

3.1. Effect of flow parameters391

Figure 3 shows the nonlinear streamwise development of the maximum 𝑢𝑟𝑚𝑠 (thick lines),392
i.e. 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 = max𝑟𝑅 𝑢𝑟𝑚𝑠, for different values of 𝜖 = 0.001, 0.01, 0.03, 0.05 (i.e. 𝑇𝑢 ≈393
0.08%, 0.8%, 2.4%, 4%). The linear results are rescaled by the corresponding 𝜖 value and394
displayed by thin lines. The linear and nonlinear solutions overlap when the amplitude395
of the oncoming disturbance is small (𝜖 = 0.001) due to the weak nonlinear interaction,396
while nonlinear effects become more intense as 𝜖 increases. When 𝜖 = 0.03 and 0.05,397
the nonlinear growth of the disturbances agrees with the corresponding linear growth only398
near the pipe inlet, and becomes much slower farther downstream. The peak location of399
the nonlinear profiles moves upstream as 𝜖 increases, and the peak amplitude is lower than400
the corresponding linear one. This latter result indicates the stabilising role of nonlinearity401
and the overprediction of the linear results. The maximum amplification of the nonlinear402
solution for 𝜖 = 0.05 is, for example, only 54.4% of that of the linear solution. Sufficiently403
downstream, both linear and nonlinear disturbances experience monotonic decay and tend to404
zero. The stabilising effect of nonlinearity has already been noticed, for example, by Ricco405
et al. (2011) and Marensi & Ricco (2017) for the development of the streaks in boundary406
layers over flat and concave plates, respectively.407

Figure 4 shows the effects of different parameters, 𝑘𝑥,𝑅, 𝑅𝑒𝑅, 𝑙 and 𝑚0, on the nonlinear408
development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 along the streamwise direction 𝑥𝑅. In figure 4(𝑎), the overlap of409
profiles at the smaller 𝑥𝑅 indicates that the streamwise wavenumber 𝑘𝑥,𝑅 has no influence410
on the initial growth of the disturbances. The profiles for 𝑘𝑥,𝑅 = 0.001 and 0.02 are almost411
indistinguishable for the whole extent 𝑥𝑅 of the pipe. By further increasing 𝑘𝑥,𝑅 up to 0.1,412
the amplitude of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 reaches a lower peak and decays at a larger rate.413

Figure 4(𝑏) displays the influence of the Reynolds number 𝑅𝑒𝑅 ranging from 1000 to414
2500. The independence of the initial growth of the disturbance is also found by changing415
𝑅𝑒𝑅. For 𝑅𝑒𝑅 ⩽ 2000, the evolution features one maximum after the initial growth, while,416
for 𝑅𝑒𝑅 > 2000, two maxima are observed. Farther downstream, the disturbance decays at a417
slower rate as 𝑅𝑒𝑅 increases.418
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Figure 4: Effects of different parameters on the streamwise development of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 . (𝑎)
Streamwise wavenumber 𝑘𝑥,𝑅; (𝑏) Reynolds number 𝑅𝑒𝑅; (𝑐) parameter 𝑙 characterising

the radial length scale; (𝑑) azimuthal wavenumber 𝑚0.

Figure 4(𝑐) shows how the change of the parameter 𝑙 affects the downstream development419
of 𝑢𝑟𝑚𝑠,𝑚𝑎𝑥 . As the characteristic radial scale of the oncoming disturbances is defined by the420
𝑙th zero of the Bessel function, i.e. b𝑚0 ,𝑙 in expansion (2.1)–(2.2), a large 𝑙 value corresponds421
to a small characteristic radial length scale, as shown in figure 20(𝑎) of Ricco & Alvarenga422
(2022) The most intense growth occurs for 𝑙 = 3.423

The effect of the azimuthal wavenumber 𝑚0 is shown in figure 4(𝑑). Increasing 𝑚0 induces424
a more intense initial growth. Different from the linear case where the maximum growth is425
found at wavenumber 𝑚0 = 3 (Ricco & Alvarenga 2022), the nonlinear disturbances grow426
the most for 𝑚0 = 2. A similar finding was reported by Reshotko & Tumin (2001) in the427
analysis of spatial transient growth in fully developed pipe flow, where non-stationary optimal428
disturbances were obtained for azimuthal wavenumbers larger than 1. The smaller 𝑚0, the429
more the disturbances persist downstream.430

3.2. Results for a representative case431

The representative case with 𝑘𝑥,𝑅 = 0.02, 𝑅𝑒𝑅 = 1000, 𝑙 = 3, 𝑚0 = 2, 𝜖 = 0.05 is analysed.432
Figures 5(𝑎) and 5(𝑏) show the profiles of 𝑢𝑟𝑚𝑠 at different streamwise locations. The433
maximum of 𝑢𝑟𝑚𝑠 appears close to the wall for locations near the pipe inlet, and gradually434
shifts towards the centreline as 𝑥𝑅 increases. Its amplitude increases with 𝑥𝑅 up to 𝑥𝑅 ≈ 26,435
after which a monotonic decrease occurs downstream. Near the pipe inlet, a significant436
disturbance growth is obtained in the region close to the pipe core (0.1 < 𝑟𝑅 < 0.5) where437
the base flow is largely inviscid. The disturbances in boundary layers subjected to free-stream438
turbulence show a similar growth in the outer region (figure 2(𝑐) of Matsubara & Alfredsson439
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Figure 5: Profiles of 𝑢𝑟𝑚𝑠 , 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 at different streamwise locations: (𝑎) growing
𝑢𝑟𝑚𝑠 at 𝑥𝑅 = 4, 8, 12, 16, 20, 24; (𝑏) decaying 𝑢𝑟𝑚𝑠 at 𝑥𝑅 = 28, 44, 70, 104, 140, 191.
(𝑐, 𝑑) 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 at 𝑥𝑅 = 4, 12, 20, 28, 44, 70. Arrows indicate the increasing 𝑥𝑅

direction.

(2001) and figure 10 of Ricco et al. (2011)). This growth does not occur in the linearised case,440
where the disturbances are confined in the near-wall region (figure 15 of Ricco & Alvarenga441
(2022)). The streamwise developments of 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 are shown in figures 5(𝑐) and 5(𝑑).442
The amplitudes of 𝑣𝑟𝑚𝑠 and 𝑤𝑟𝑚𝑠 are comparable with that of 𝑢𝑟𝑚𝑠 close to the pipe inlet,443
while they become much smaller downstream after considerable attenuation.444

Figure 6 displays the downstream development of the forcing mode (𝑚, 𝑛) = (2, 1) (red445
line) and the nonlinearly generated modes, which are characterised by max𝑟𝑅 |𝑟𝑡 �̂�𝑚,𝑛 |, the446
maximum intensity of |𝑟𝑡 �̂�𝑚,𝑛 | at each 𝑥𝑅 location. For the assumed free-stream disturbances447
(2.1), modes (𝑚, 𝑛) and (−𝑚, 𝑛) have the same amplitude. Modes (𝑚, 𝑛) and (−𝑚,−𝑛) also448
have the same amplitude because of the Hermitian property (2.8). Therefore, without losing449
generality, only the results for 𝑚 ⩾ 0 and 𝑛 ⩾ 0 are presented. The mean-flow distortion �̂�0,0450
acquires considerable growth shortly downstream of the pipe inlet, overshoots the forcing451
mode �̂�2,1 at 𝑥𝑅 ≈ 24.4, and becomes dominant downstream. The amplitude of the higher452
harmonics also grows because of the strong nonlinear interaction when 𝜖 = 0.05, and then453
attenuates due to viscous effects. Downstream of 𝑥𝑅 = 200, only the forcing mode �̂�2,1, the454
mean-flow distortion �̂�0,0 and the pulsatile mode �̂�0,2 still exist. They all decay to zero farther455
downstream.456

Figure 7 shows the streamwise velocity profiles of the mean-flow distortion 𝑟𝑡 �̂�0,0, the457
forcing modes 𝑟𝑡 |�̂�2,1 | and the higher harmonics 𝑟𝑡 |�̂�0,2 |, 𝑟𝑡 |�̂�4,0 |, 𝑟𝑡 |�̂�4,2 | at six different458
streamwise locations, 𝑥𝑅 = 4, 16, 32, 51, 96, 180. The most intense growth is obtained by459
max𝑟𝑅 |𝑟𝑡 �̂�0,0 | at 𝑥𝑅 = 51 (refer to figure 6). The ordinate axis in 7(𝑎) and 7( 𝑓 ) is stretched460
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Figure 6: Streamwise development of the forcing mode (red line) and nonlinearly
generated modes, characterised by max𝑟𝑅 |𝑟𝑡 �̂�𝑚,𝑛 |.

by a factor of 2 for clarity. Significant growth and decay in the velocity amplitude are461
observed for modes 𝑟𝑡 �̂�0,0, 𝑟𝑡 |�̂�2,1 | and 𝑟𝑡 |�̂�0,2 | along the pipe entrance. Moreover, the shape462
of velocity profiles changes substantially as the flow evolves downstream. The positive values463
of the mode 𝑟𝑡 �̂�0,0 near the wall indicate an increase of the wall-shear stress. The second464
harmonics, 𝑟𝑡 |�̂�4,0 | and 𝑟𝑡 |�̂�4,2 |, experience considerable attenuation shortly after the initial465
growth and are almost negligible at 𝑥𝑅 = 96 and 180.466

Figure 8 shows the streamwise velocity profiles of the laminar base flow 𝑈 (dashed lines)467
and the mean flow �̄� (solid lines), i.e. the velocity averaged in 𝑡 and \, at the same streamwise468
locations as those in figure 7. Mathematically, the distorted mean flow �̄� is the sum of the469
laminar base flow and the mean-flow distortion, i.e. �̄� = 𝑈 + 𝑟𝑡 �̂�0,0. A significant deviation470
from the laminar base flow is observed in figure 8(𝑑) (𝑥𝑅 = 51), where max𝑟𝑅 |𝑟𝑡 �̂�0,0 | reaches471
the maximum growth. In the pipe core region, the profile exhibits a deficit with respect to472
the laminar base flow, while it is larger than the laminar value near the wall. The profiles of473
the mean-flow distortion 𝑟𝑡 �̂�0,0 shown in figure 7 further explain these velocity deficits and474
surpluses. Positive mean-flow distortion 𝑟𝑡 �̂�0,0 always exists near the pipe wall, while in the475
pipe core it is positive only near the inlet, and negative farther downstream.476

Figure 9 displays contour plots of the velocity components �̃�, �̃� and �̃� (from left to right) at477
𝑡 = 0 and four different streamwise locations 𝑥𝑅 = 4, 26, 60, 150 (from top to bottom). These478
plots visualise the formation and evolution of elongated pipe-entrance nonlinear structures479
(EPENS). Near the pipe inlet (𝑥𝑅 = 4), the three velocity components are of comparable480
amplitude. The EPENS appear because the streamwise component �̃� becomes prevalent at481
𝑥𝑅 = 26 (attributed to the growth of �̃� and the attenuation of �̃� and �̃�), where the disturbances482
are most amplified, as shown in figure 3. In contrast to the nonlinear streaks observed in483
transitional boundary-layer flows (Matsubara & Alfredsson 2001) that are confined in the484
near-wall region, these EPENS occupy the entire cross-section with two high-speed streaks485
near the pipe wall, and two low-speed streaks near the pipe core. The twofold rotational486
symmetry featured by these EPENS results from the dominance of the forcing mode �̂�2,1487
among all the modes with 𝑚 ≠ 0 (refer to figure 6). The modes with 𝑚 = 0 are uniform in488
the azimuthal direction. The gradual downstream attenuation after 𝑥𝑅 = 26 can be observed489
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Figure 7: Streamwise velocity profiles of the mean-flow distortion 𝑟𝑡 �̂�0,0, forcing modes
𝑟𝑡 |�̂�2,1 | and second harmonics 𝑟𝑡 |�̂�0,2 |, 𝑟𝑡 |�̂�4,0 |, 𝑟𝑡 |�̂�4,2 | at different streamwise locations.

in the last two rows of figure 9, corresponding to 𝑥𝑅 = 60 and 150. At 𝑥𝑅 = 60 and 150,490
the low-speed streaks merge near the pipe core, flanked by the high-speed streaks on their491
sides. Contours of the streamwise velocity �̃� at 𝑥𝑅 = 200 and four different time phases492
𝑡 = 0, 𝜋/4, 𝜋/2, 3𝜋/4 are shown in figure 10. The radial and azimuthal velocities �̃� and �̃� are493
O(10−5) at that location, thus are not shown. The distributions of �̃� at 𝑡 ∈ [𝜋, 2𝜋] exhibit the494
same features as those at 𝑡 ∈ [0, 𝜋], but with a rotation of 90◦ around the pipe axis.495

3.3. Comparison with travelling waves496

The nonlinear vortical structures evolving along the pipe entrance are now compared with497
travelling waves appearing in fully developed pipe flow. Inspired by the self-sustained498
process proposed by Waleffe (1997), Faisst & Eckhardt (2003) and Wedin & Kerswell499
(2004) discovered three-dimensional travelling waves (TWs) in pipe flow. These nonlinear500
waves consist of streamwise vortices, streaks and streamwise-dependent wavy structures.501
They were also observed experimentally in turbulent puffs and in fully developed turbulence502
by Hof et al. (2004). New families of TWs have also been reported in Pringle & Kerswell503
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Figure 8: Streamwise velocity profiles of the laminar base flow 𝑈 (dashed line) and the
distorted mean flow �̄� = 𝑈 + 𝑟𝑡 �̂�0,0 (solid line) at different streamwise locations.

(2007) and Pringle et al. (2009). These TWs are nonlinear solutions of the Navier–Stokes504
equations and they capture distinct features of coherent structures observed in turbulent pipe505
flow (Graham & Floryan 2021). Willis & Kerswell (2008) suggested that these TWs populate506
an intermediate region between the laminar and turbulent states in phase space. However,507
the physical origin of these TWs has not been discussed and remains unclear.508

As shown in figure 11, excellent visual agreement occurs between the R3-TW (where509
Rℎ represents the ℎ-fold rotational symmetry) found by Wedin & Kerswell (2004) and the510
R3-EPENS at the same Reynolds number, 𝑅𝑒𝑅 = 900. (The Reynolds number based on the511
pipe diameter used in Wedin & Kerswell (2004), Willis et al. (2017) and Kerswell & Tutty512
(2007) has been converted to 𝑅𝑒𝑅 herein.) The EPENS are shown at 𝑥𝑅 = 18 and 𝑡 = 0,513
where 𝑢𝑢𝑟𝑚,𝑚𝑎𝑥 attains the largest amplitude. Remarkable agreement is observed for the514
streamwise vortices and the high/low-speed streaks, although the TWs are found in fully515
developed pipe flow while the EPENS exist in the pipe entrance region. Both the R3-TW516
and R3-EPENS have three equispaced low-speed streaks (dark) located towards the centre517
and three equispaced high-speed streaks (light) positioned near the wall. For both sets of518
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Figure 9: Contours of the velocity components �̃�, �̃� and �̃� (from left to right) at the time
instant 𝑡 = 0 and four different locations 𝑥𝑅 = 4, 26, 60, 150 (from top to bottom), where
the red/blue coloured shading indicates velocity faster/slower than the laminar base-flow

velocity 𝑈. The same shading is used in figure 10.
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Figure 10: Contours of the streamwise velocity �̃� at the streamwise location 𝑥𝑅 = 200 and
four different time phases (𝑎) 𝑡 = 0, (𝑏) 𝑡 = 𝜋/4, (𝑐) 𝑡 = 𝜋/2, and (𝑑) 𝑡 = 3𝜋/4.

nonlinear structures, streamwise vortices are located between adjacent low-speed and high-519
speed streaks, moving fluid towards the pipe axis in correspondence with low-speed streaks520
and wallward where high-speed streaks exist.521

The TWs originate mathematically from saddle–node bifurcations and are calculated using522
a homotopy approach. However, this numerical method does not explain the physical origin of523
TWs. The method to compute the EPENS instead describes the physical origin of EPENS, i.e.524
the EPENS arise from the algebraic growth, nonlinear interactions and streamwise stretching525
of realistic vortical disturbances convected by the uniform flow approaching and entering the526
pipe inlet. We note that other receptivity mechanisms, such as wall vibration or roughness,527
could also create them. Wedin & Kerswell (2004) found that multiple solution branches528
coexist at higher Reynolds numbers (refer to figure 10 of Wedin & Kerswell (2004)). Besides529
the Rℎ solution shown in figure 11(𝑎), which consists of ℎ high-speed streaks near the wall,530
Wedin & Kerswell (2004) also discovered solutions with 2ℎ near-wall high-speed streaks in531
other branches. Only EPENS with ℎ high-speed streaks are instead found in our computations.532

With figure 11(𝑏) as a reference, computations of EPENS for 𝑚0 = 3 are carried out for533
different 𝑅𝑒𝑅, 𝑘𝑥,𝑅 and 𝑙. The results are displayed in figure 12 at the locations where the534
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(𝑎) (𝑏)

Figure 11: Comparison of velocity fields between the R3-TW and R3-EPENS for
𝑅𝑒𝑅 = 900. The cross-section vectors �̃� 𝒋 + �̃�𝒌 (where 𝒋 and 𝒌 are unit vectors in the
radial and azimuthal directions) are indicated by arrows. The streamwise velocity �̃� is

indicated by the shading, where light/dark colour indicates �̃� faster/slower than the
laminar base-flow velocity 𝑈. The same shading is used in figures 12, 13 and 14. (𝑎) The
R3-TW found by Wedin & Kerswell (2004). (𝑏) The R3-EPENS calculated at 𝑥𝑅 = 18,
where they are most amplified, and 𝑡 = 0 with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3 and 𝑚0 = 3.

Figure 12: Velocity fields of R3-EPENS at locations where they are most amplified and
𝑡 = 0 for different 𝑅𝑒𝑅 , 𝑘𝑥,𝑅 and 𝑙. Unless otherwise stated, the parameters are 𝜖 = 0.05,
𝑅𝑒𝑅 = 900, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3 and 𝑚0 = 3. (𝑎) 𝑅𝑒𝑅 = 785, 𝑥𝑅 = 17. (𝑏) 𝑘𝑥,𝑅 = 0.002,
𝑥𝑅 = 18. (𝑐) 𝑙 = 2, 𝑥𝑅 = 22. (𝑑) 𝑅𝑒𝑅 = 1600, 𝑥𝑅 = 19. (𝑒) 𝑘𝑥,𝑅 = 0.2, 𝑥𝑅 = 15. ( 𝑓 )

𝑙 = 4, 𝑥𝑅 = 20.

EPENS are most amplified. Figure 11(𝑎) corresponds to solution 𝑎 in figure 10 of Wedin &535
Kerswell (2004), which was used for the branch continuation. This branch was traced down536
to 𝑅𝑒𝑅 = 785 and up to 𝑅𝑒𝑅 = 1600. Figures 12(𝑎) and 12(𝑑) show the EPENS calculated537
at these two Reynolds numbers. The similarities in the dominant streaks and vortices of538
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Figure 13: Comparison of velocity fields between TWs and EPENS for rotational
symmetries R5 at 𝑅𝑒𝑅 = 1242.75 and R6 at 𝑅𝑒𝑅 = 1434.5. (𝑎, 𝑐) The R5- and R6-TW
found by Wedin & Kerswell (2004) at their saddle-node bifurcations. (𝑏, 𝑑) The R5- and
R6-EPENS calculated at 𝑥𝑅 = 12 and 11, where they are most amplified, and 𝑡 = 0 for

𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3, and 𝑚0 = 5, 6.

EPENS for different 𝑅𝑒𝑅 are observed. As 𝑅𝑒𝑅 increases, the low-speed streaks appear539
slightly narrower along the azimuthal direction, and the high-speed streaks become slightly540
more flattened towards the wall. The close resemblance among TWs pertaining to the same541
branch for different 𝑅𝑒𝑅 was also reported in Wedin & Kerswell (2004). Figures 12(𝑏) and542
12(𝑒) show that varying the frequency by one hundred times has only a minimal impact on543
the EPENS. The robustness of the EPENS is further confirmed in figures 12(𝑏) and 12(𝑒)544
by varying the radial modulation of the inlet perturbation flow, given by the change of the545
parameter 𝑙. Increasing 𝑙, indicating an inlet perturbed flow with a smaller radial length scale,546
has only a mild influence on the EPENS. This result proves that the EPENS are likely to be547
a strong attractor of the dynamical system.548

Except for the R3 symmetry, only TWs at their saddle-node bifurcations are presented for549
other rotational symmetry in Wedin & Kerswell (2004). Among these solutions, R5- and550
R6-TWs consist of ℎ high-speed streaks near the wall, while R1-, R2- and R4-TWs have551
2ℎ high-speed streaks. Remarkable agreement between TWs and EPENS is also obtained552
for the R5 and R6 rotational symmetries, as reported in figure 13. The EPENS with ℎ-553
fold rotational symmetry observed downstream is always excited by free-stream vortical554
disturbances with azimuthal wavenumber 𝑚0 = ℎ. The discovery of R1-TWs, which possess555
no discrete rotational symmetry, was reported in Pringle & Kerswell (2007). These TWs556
are more important than the rotationally symmetric ones because the upper/lower branches557
correspond to much higher/lower wall-shear stress values compared to rotationally symmetric558
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Figure 14: Comparison of velocity fields between the asymmetric TWs and R1-EPENS
for 𝑅𝑒𝑅 = 1450 (𝑎, 𝑏) and 1340 (𝑐, 𝑑). (𝑎, 𝑐) The asymmetric TWs found by Pringle &

Kerswell (2007) and Willis et al. (2017), where the white/dark coloured shading indicates
�̃� faster/slower than the laminar base-flow velocity 𝑈. (𝑏, 𝑑) The R1-EPENS calculated at
𝑥𝑅 = 36, where they are most amplified, and 𝑡 = 0 with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.02, 𝑙 = 3, and

𝑚0 = 1.

ones. Figure 14(𝑎) shows the velocity field of an asymmetric TW of these new families. One559
low-speed streak is centred at half the distance between the wall and the centreline, and is560
surrounded by two high-speed streaks. As shown in figure 14(𝑏), rotationally asymmetric561
EPENS are also found in our calculation when 𝑚0 = 1. However, they consist of one wide562
near-wall high-speed streak flanked by two low-speed streaks, and one low-intensity high-563
speed streak on the opposite side of the wide high-speed streak. The cross-section velocity564
vector field reveals that counter-rotating streamwise vortices occur between the high-speed565
and the low-speed streaks. Using a feedback control strategy, a new asymmetric TW was566
identified by Willis et al. (2017) (figure 14(𝑐)). Good agreement is noted between the streaks567
of their TW and our R1-EPENS at the same Reynolds number, whereas only very weak568
streamwise vortices are found between the wide high-speed streak and low-speed streaks in569
their case.570

The comparison of streamwise velocity isosurfaces of the R3-TW calculated by Kerswell571
& Tutty (2007) and the R3-EPENS at 𝑅𝑒𝑅 = 1200 is also very good, as shown in figure 15,572
where the light and dark shadings denote the streamwise velocity for �̃� = 0.3𝑈 and −0.3𝑈.573
The R3-TW is displayed versus its wavelength (the diameter of the pipe is used as a reference574
length), while the R3-EPENS is displayed for 13 < 𝑥𝑅 < 17. Along these distances, both the575
near-wall high-speed streaks and the low-speed streaks near the pipe core for both the TW576
and EPENS evolve slowly in the streamwise direction.577
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(𝑎) (𝑏)

Figure 15: Comparison of streamwise velocity isosurfaces between the R3-TW and
R3-EPENS for 𝑅𝑒𝑅 = 1200. The light and dark shading represents the streamwise

velocity �̃� that equals 0.3𝑈 and −0.3𝑈. (𝑎) The R3-TW over the wavelength found by
Kerswell & Tutty (2007). (𝑏) The R3-EPENS calculated for 13 ≪ 𝑥𝑅 ≪ 17 and 𝑡 = 0

with 𝜖 = 0.05, 𝑘𝑥,𝑅 = 0.2, 𝑙 = 3 and 𝑚0 = 3.

Considering the richness of the phase space, further comparison between TWs and EPENS578
for different parameters are warranted to fully understand their connection. One challenge in579
searching for an TW is the daunting numerical process required to find a good initial guess,580
whereas EPENS can be calculated much more rapidly using our approach. It is therefore581
suggested that EPENS could be used as initial guesses in the search for TWs.582

3.4. Comparison with experimental data583

Ricco & Alvarenga (2022) compared their linearised numerical results to the experimental584
measurements by Wygnanski & Champagne (1973). For both the mean and perturbation flow,585
excellent agreement was obtained at a low level of free-stream turbulence intensity, while586
a significant deviation between the linear results and the experimental data was reported587
for higher intensities. In figure 16, the experimental data at high turbulence intensity are588
compared with our nonlinear results. The turbulence intensity was measured by (𝑢𝑟𝑚𝑠/�̄�)𝑐𝑙589
in Wygnanski & Champagne (1973), where the subscript 𝑐𝑙 refers to the value at the pipe axis.590
The values of (𝑢𝑟𝑚𝑠/�̄�)𝑐𝑙 = 5.8% and 7.8% in Wygnanski & Champagne (1973) are found591
to be equivalent to 𝜖 = 0.082 and 0.12 in our calculation for the case with 𝑘𝑥,𝑅 = 0.118,592
𝑙 = 2 and 𝑚0 = 2. Figure 16(𝑎) shows the good agreement in the mean-flow velocity593
profiles except in the near-wall region where the numerical calculations underpredict the594
experimental data. Good agreement also occurs in the comparison of the perturbation-flow595
velocity profiles, as shown in figure 16(𝑏). In Ricco & Alvarenga (2022), the velocity profile596
was instead predicted by the linearised boundary-region equations to be zero at the pipe axis.597
The finite perturbations near the pipe axis are well predicted when the nonlinear interactions598
(i.e. 𝑟𝑡 �̂�0,0) are taken into account. Both studies show the same trend: as the turbulent intensity599
increases, a larger peak is reached, and the peak position moves towards the wall. The peak600
of the profiles measured by Wygnanski & Champagne (1973) is obtained at a lower value and601
located closer to the wall compared to our calculations. The disagreements are likely to come602
from the different inflows at the pipe inlet. In experiments, the disturbances were generated603
by an orifice plate or a circular disk placed at the inlet, and no precise information about604
the resulting initial flow was given. The analytical expression (2.1) is instead used to model605
the vortical disturbances in our calculations. As the flow is described by an initial-boundary606
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Figure 16: Comparison of (𝑎) the mean flow and (𝑏) the perturbation flow between the
experimental measurements (circles) and present numerical results (lines) for 𝑅𝑒𝑅 = 1200

at 𝑥𝑅 = 30. Open and solid circles: experimental data measured by Wygnanski &
Champagne (1973) (refer to as WC73 in the figure) with (𝑢𝑟𝑚𝑠/�̄�)𝑐𝑙 = 5.8% and 7.8%.

Dotted and solid lines: present results with 𝜖 = 0.082, 0.12, 𝑘𝑥,𝑅 = 0.118, 𝑙 = 2 and
𝑚0 = 2.

value problem in the pipe entrance, the inflow characteristics are crucial for an accurate607
prediction of the downstream development of the flow.608

4. Summary and conclusions609

As a step towards understanding the laminar–turbulent transition in pipe flow, we have610
investigated the nonlinear evolution of free-stream vortical disturbances entrained in the611
entrance region of a circular pipe by using a high Reynolds number asymptotic approach. The612
oncoming disturbances are modelled by a pair of vortical modes with the same frequency but613
opposite azimuthal wavenumber. A long-wavelength hypothesis is utilised. This hypothesis is614
inspired by the experimental finding that streamwise-elongated streaks induced by free-stream615
disturbances in boundary layers amplify significantly (Matsubara & Alfredsson 2001). The616
disturbance amplitude is assumed to be intense enough for nonlinear interactions to occur.617
The present study can therefore be viewed as an extension of Ricco & Alvarenga (2022) to618
the nonlinear case.619

The resultant nonlinear system is solved numerically by a marching procedure in the620
streamwise direction. A parametric study reveals the stabilising effect of nonlinearity on the621
intense algebraic disturbance growth near the pipe inlet. The linear theory thus overpredicts622
the nonlinear disturbance intensity. The effect of the Reynolds number, the streamwise and623
azimuthal wavelengths, and the radial length scale of the inlet disturbance on the nonlinear624
evolution of the disturbances is investigated. The mean-flow distortion �̂�0,0 grows significantly625
shortly downstream of the pipe inlet, being negative in the pipe core and positive near the626
wall, indicating an increase of wall-shear stress.627

We report the formation, amplification and attenuation of rotationally symmetric elongated628
pipe-entrance nonlinear structures (EPENS). The distinct features of Rℎ-EPENS (ℎ > 1) are629
equispaced ℎ high-speed streaks around the pipe wall and ℎ low-speed streaks in the pipe core.630
A remarkable resemblance between these structures and nonlinear travelling waves (TWs)631
occurring in fully developed pipe flow is noted for 𝑚0 = 3, 5, 6. Rotationally asymmetric632
EPENS are discovered for 𝑚0 = 1. They also agree well with asymmetric TWs for 𝑚0 = 1.633
These similarities may shed light on the physical origin of nonlinear TWs. The robustness634
of the EPENS in response to changes of different inlet flow conditions is demonstrated,635
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indicating that the EPENS are likely to be a strong attractor of the dynamical system. We636
also suggest the potential use of EPENS as an initial guess in the numerical search for the637
nonlinear TWs. More investigations are necessary to clarify the connection between the638
EPENS and the TWs.639

With the inclusion of nonlinear effects, good agreement between our calculations and640
the experimental measurements of Wygnanski & Champagne (1973) is obtained for both641
the mean flow and the perturbation flow. Further improvement may be gained by using642
a continuous spectrum of free-stream disturbances as oncoming disturbances. Performing643
a secondary instability analysis of the EPENS is also of interest. The EPENS attenuate644
downstream in our calculation, but they may persist when the growth of small-amplitude645
secondary disturbances is taken into account.646

It is our hope that the theoretical work presented herein will motivate more direct numerical647
simulations and experimental investigations in the entrance region of pipe flow.648
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Appendix A. Conservation of the mass flow rate655

At each instant in time and at each streamwise location, the mass flow rate is conserved.656
Since the flow is incompressible, this condition translates to the conservation of the bulk657
velocity, i.e. the streamwise velocity averaged on the cross-section of the pipe is equal to the658
oncoming velocity 𝑈∗

∞:659

1
𝜋𝑅2

∫ 2𝜋

0

∫ 𝑅

0
(𝑈 + 𝑟𝑡 �̄�) 𝑟d𝑟d\ = 1. (A 1)660

Substituting (2.7) into (A 1), equation (2.11) is obtained for the laminar base flow and661

∞∑︁
𝑚,𝑛=−∞

∫ 2𝜋

0

∫ 𝑅

0
�̂�𝑚,𝑛𝑒

𝑖𝑚\+𝑖𝑛𝑡𝑟d𝑟d\ = 0. (A 2)662

By using the orthogonality property of the Fourier series, equation (2.20) is obtained, which is663
the condition needed to solve the system because the pressure Γ0,𝑛 is an additional unknown.664

Appendix B. Coefficients of equation (2.27)665

The expressions of {𝑉,𝑉𝑟 , 𝑉𝑥 , · · · ,𝑈𝑥𝑟𝑟 } in equation (2.27) are

𝑉 =

(
1 − 1

𝑚2

) (
𝑖𝑛 + 𝜕𝑉

𝜕𝑟
+ 𝑚2 − 1

F 𝑟2

)
+ 2𝑟
𝑚2

𝜕2𝑈

𝜕𝑥𝜕𝑟
+ 𝑟2

𝑚2
𝜕3𝑈

𝜕𝑥𝜕𝑟2 ,

𝑉𝑟 =

[(
1 − 4

𝑚2

)
𝑉 − 3𝑟

𝑚2

(
𝑖𝑛 + 𝜕𝑉

𝜕𝑟

)
−

(
2 + 1

𝑚2

)
1
F 𝑟

]
+ 𝑟2

𝑚2
𝜕2𝑈

𝜕𝑥𝜕𝑟
,

𝑉𝑥 =

(
1 − 1

𝑚2

)
𝑈 + 𝑟

𝑚2

(
𝜕𝑈

𝜕𝑟
+ 𝑟

𝜕2𝑈

𝜕𝑟2

)
,
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𝑉𝑟𝑟 = −
[
𝑟

𝑚2

(
𝑖𝑛𝑟 + 5𝑉 + 𝑟

𝜕𝑉

𝜕𝑟

)
+

(
2 − 5

𝑚2

)
1
F

]
,

𝑉𝑥𝑟 = −3𝑈𝑟

𝑚2 ,

𝑉𝑟𝑟𝑟 = − 𝑟

𝑚2

(
𝑟𝑉 − 6

F

)
,

𝑉𝑥𝑟𝑟 = −𝑟
2𝑈

𝑚2 ,

𝑉𝑟𝑟𝑟𝑟 =
𝑟2

𝑚2F
,

𝑈 =
𝜕𝑉

𝜕𝑥
+ 2𝑟
𝑚2

𝜕2𝑈

𝜕𝑥2 + 𝑟2

𝑚2
𝜕3𝑈

𝜕𝑥2𝜕𝑟
,

𝑈𝑟 =
𝑟

𝑚2
𝜕𝑉

𝜕𝑥
,

𝑈𝑥 = − 2
F 𝑟

+ 6𝑟
𝑚2

𝜕𝑈

𝜕𝑥
+ 2𝑟2

𝑚2
𝜕2𝑈

𝜕𝑥𝜕𝑟
,

𝑈𝑟𝑟 =
𝑟2

𝑚2
𝜕𝑉

𝜕𝑥
,

𝑈𝑥𝑟 =
2
𝑚2

(
1
F − 2𝑉𝑟 − 𝑟2 𝜕𝑉

𝜕𝑟

)
,

𝑈𝑥𝑟𝑟 =
2𝑟

𝑚2F
.

Appendix C. Modified block tridiagonal matrix algorithm666

A modified block tridiagonal matrix algorithm is devised for solving the discretised version667
of system (2.30)-(2.32) together with the discretised (2.20) for 𝑚 = 0,668

𝑨𝜹 = 𝒃. (C 1)669

In expanded form, the system (C 1) is670 

𝐴1 𝐶1 𝐸1
𝐵2 𝐴2 𝐶2 𝐸2

· · · · · · · · · · · ·
𝐵 𝑗 𝐴 𝑗 𝐶 𝑗 𝐸 𝑗

· · · · · · · · · · · ·
𝐵𝐽−3 𝐴𝐽−3 𝐶𝐽−3 𝐸𝐽−3

𝐵𝐽−2 𝐴𝐽−2 𝐸𝐽−2
𝐷1 𝐷2 𝐷3 · · · 𝐷𝐽−2 0





𝛿1
𝛿2
· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3
𝛿𝐽−2
Π


=



𝑏1
𝑏2
· · ·
𝑏 𝑗

· · ·
𝑏𝐽−3
𝑏𝐽−2

0


(C 2)671

where 𝐴 𝑗 , 𝐵 𝑗 and 𝐶 𝑗 are 3 × 3 matrices, 𝐸 𝑗 , 𝛿 𝑗 and 𝑏 𝑗 are 3 × 1 matrices, 𝐷 𝑗 is a 1 × 3672
matrix, and Π is a scalar. In equation (C 2), row 𝑗 for 2 ⩽ 𝑗 ⩽ 𝐽−3 represents the discretised673
equations (2.30)–(2.32) at the interior nodes, while rows 1 and 𝐽 − 2 refer to the equations at674
the boundaries. The last row is the discretised integral (2.20).675

First, we add any two decoupled equations to the system in order to add two rows at the676
bottom of matrix 𝑨 and two columns on the right of matrix 𝑨. This step makes 𝐷 𝑗 and 𝐸 𝑗677
3×3 matrices, and creates two 3×1 matrices, 𝛿𝐽−1 and 𝑏𝐽−1, at the bottom of 𝜹 and 𝒃, which678
is necessary in order to render the system suitable for the block elimination. The matrices679
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𝐷 𝑗 and 𝐸 𝑗 are renamed D 𝑗 and E 𝑗 . The system (C 2) becomes680 

𝐴1 𝐶1 E1
𝐵2 𝐴2 𝐶2 E2

· · · · · · · · · · · ·
𝐵 𝑗 𝐴 𝑗 𝐶 𝑗 E 𝑗

· · · · · · · · · · · ·
𝐵𝐽−3 𝐴𝐽−3 𝐶𝐽−3 E𝐽−3

𝐵𝐽−2 𝐴𝐽−2 E𝐽−2
D1 D2 D3 · · · D𝐽−2 E𝐽−1





𝛿1
𝛿2
· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3
𝛿𝐽−2
𝛿𝐽−1


=



𝑏1
𝑏2
· · ·
𝑏 𝑗

· · ·
𝑏𝐽−3
𝑏𝐽−2
𝑏𝐽−1


(C 3)681

The standard block tridiagonal matrix algorithm described in Cebeci (2002) is modified to682
solve (C 3), which also consists of the forward sweep and backward substitution. However,683
in each forward sweep, one more step needs to be performed to eliminate D 𝑗 , which leads to684 

𝐼 𝐶′
1 E′

1
𝐼 𝐶′

2 E′
2

· · · · · · · · ·
𝐼 𝐶′

𝑗
E′

𝑗

· · · · · · · · ·
𝐼 𝐶′

𝐽−3 E′
𝐽−3

𝐼 E′
𝐽−2

E′
𝐽−1





𝛿1
𝛿2
· · ·
𝛿 𝑗

· · ·
𝛿𝐽−3
𝛿𝐽−2
𝛿𝐽−1


=



𝑏′1
𝑏′2
· · ·
𝑏′
𝑗

· · ·
𝑏′
𝐽−3

𝑏′
𝐽−2

𝑏′
𝐽−1


(C 4)685

where the prime denotes the new coefficients. The solution is then obtained by backward686
substitution:687 

𝛿𝐽−1 = E′−1
𝐽−1𝑏

′
𝐽−1,

𝛿𝐽−2 = 𝑏′
𝐽−2 − E′

𝐽−2𝛿𝐽−1

𝛿𝑖 = 𝑏′
𝑖
− 𝐶′

𝑖
𝛿𝑖+1 − E′

𝑖
𝛿𝐽−1, 𝑖 = 𝐽 − 3, 𝐽 − 4, · · · , 1.

(C 5)688
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